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\\Ey ABSTRACT

The statistics of acoustic signals propagated to long ranges in the ocean
are investigated in detail in this thesis. The phase random model of multipath
propagation is extended to include finite bandwidth and/or modulated sources as
well as multiple source configurations. The theoretical analyses include the
derivation of many new probability density functions for these new cases as well
as for the single narrowband sourgg.

The probability density function for A, the time rate of change of the level
in decibels for the single narrowband source is derived. P:(A) depends only upon
vZ, the single path mean square phase rate, which can be refated to certain ocean
,dynamical processes. The analysis of finite bandwidth and/or modulated sources
reveals that the amplitude and amplitude rate densities (including P:(A)) are
independent of the finite bandwidth and modulation effects, but the ﬁensity of
the time rate-of-change of the multipath phase ¢is segsitive to these effects.
"Thus, fitting P.(A) to histograms from data to find v° is the preferred method
for determining“this important parameter. Bandwidth effects in ¢ can be neglected,
however, if B<<2v where B is the signal bandwidth. The analysis akso reveals a
potentially powerful technique for determining parameters of the modulation or
bandﬂifth of a source from the received multipath signal.

The analysis of multiple sources, applicable to noise problems, includes
important approximations to densities which are intractable analytically, and
would involve significant computer time to solve exactly. In addition to studies
of the amplitude densities, significant progress has been made in solving for
the amplitude rate densities and the joint densities of amplitude and amplitude
rate. 4

In addition to providing valuable confirmation of much of the theoretical
analysis, a computer simulation of phase random multipath propagation also con-
firms that for N > 4 paths phase random multipath conditions begin to closely
approach the asymptotic conditions for N + «.

Data at 220Hz and 406Hz received by drifting sonobugys in the Atlantic at
approximately 300 km in range were analyzed. Values of y2 obtained support an
internal wave model for the relevant dynamical process. The modulation theory
uncovered a heretofore unrecognized modulation in the data due to an error of
the Doppler tracking system. Predictions of crossing rates including this modu-
lation effect are in good agreement with the data.

Other data at 15Hz and 33Hz propagated to ranges between 250 km to 450 km
in the Pacific in which deliberate modulation was introduceg, once again provide
excellent confirmation of the theory. Measured values of v vary significantly
from run to run and are not consistent with an internal wave model, indicating
some other mechanism (i.e., tidal, rough scattering) must account for the fully
saturated phase random nature of the data. The technique for determining modula-
tion parameters was used, and for the 76 modulated runs analyzed, the average
error in determining the actual bandwidth of the modulation of the source from
the received multipath signal was 8%.
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ABSTRACT

The statistics of acoustic signals propagated to long
ranges in the ocean are investigated in detail in this
thesis. The phase random model of multipath propagation
is extended to include finite bandwidth and/or modulated
sources as well as multiple source configurations. The
theoretical analyses include the derivation of many new
probability density functions for these new cases as
well as for the single narrowband source.

The probability density function for A, the time
rate of change of the level in deczhels for the single
narrowband source is derived. (d) depends only upon v?
the single path mean square phasé rate, which can be
related to certain ocean dynamical processes. The analysis
of finite bandwidth and/or modulated sources reveals that
the .amplitude and 'amplitude rate densities (including

(A)) are independent of the finite bandwidth and
mAdulation effects, but the density of the time
rate-of-change of the multipath phase ¢ is sensitive to
these effects. Thus, fitting P; (A) to histograms from
data to £ind v?® is the preferreé method for determlnlng

this important parameter. Bandwidth effects in ¢ can be
neglected, however, if B << 2v where B is the signal
bandwidth. The analysis also reveals a potentially
powerful technique for determining parameters of the
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modulation or bandwidth of a source from the received
multipath signal.

The analysis of multiple sources, applicable to noise
problems, includes important approximations to densities
which are intractable analytically, and would involve
significant computer time to solve exactly. In addition
to studies of the amplitude densities, significant progress
has been made in solving for the amplitude rate densities
and the joint densities of amplitude and amplitude rate.

In addition to providing valuable confirmation of
much of the theoretical analysis, a computer simulation
of phase random multipath propagation also confirms tnat
for N > 4 paths phase random multipath conditions begin to
closely approach the asymptotic conditions for N » =,

Data at 220Hz and 406Hz received by drifting
sonobuoys in the Atlantic at approximately 300 km in range
were analyzed. Values of v? obtained support an internal
wave model for the relevant dynamical process. The
modulation theory uncovered a heretofore unrecognized
modulation in the data due to an error of the Doppler
tracking system. Predictions of crossing rates including
this modulation effect are in good agreement with the data.

Other data at 15Hz and 33Hz propagated to ranges
between 250 km to 450 km in the Pacific in which deliberate
modulation was introduced, once again provide excellent
confirmation of the theory. Measured values of v? vary
significantly from run to run and are not consistent with
an internal wave model, indicating some other mechanism
(i.e., tidal, rough scattering) must account for the fully
saturated phase random nature of the data. The technigque
for determining modulation parameters was used, and for
the 76 modulated runs analyzed, the average error in

‘determining the actual bandwidth of the modulation of the

source from the received multipath signal was 8%.

Thesis Supervisor: Ira Dyer
Title: Professor of Ocean Engineering
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time rate of change of M(t)

characteristic function of random
variable ¥

two-dimensional characteristic function of
the joint pdf of random variables Xy
and X2

the confluent hypergeometric function
(sometimes written ¢(a,8,2)]

number of groups of sources, each group with
LE:i (i=1,2,...,N) sources per group

number of independent propagation paths
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XqrXq X17X2)

P _(x)

01(a,B.Y;x.Y)

X

-21~

the long time average mean square pressure
at the receiver for a single source
(0 =207 2 Elx 1)

the single path mean-square phase rate
(v¢ = E[eglv n)

probability density function (pdf) of
random variable x

the joint pdf of random variables X1
and X

the pdfvof random variable x for N groups

the Laplace transform of the pdf of
random variable

single path amplitude at the receiver
short time average root-mean-sgquare pressure
time rate of change of o

variance of phase in Gaussian phase
modulation

one half of the long time average
mean-square pressure at the receiver
(oi = Nr?/2)

Whittaker's function

quadrature components of the signal envelope

time rate of change of the quadrature
components

degenerate hypergeometric series in two
variables

short time average mean-square pressure
(x=02)

time rate of change of ¥

multipath rhase




F' $

¢ Y (x)
' $x)
:
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P

multipath phase rate
Euler psi function [¥(x) = 1nl(x)]

digamma function [y!(x) = &/dx ¥ (x)]
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INTRODUCTION

Acoustic signals propagated to long ranges in the

; ocean, tens to hundreds to thousands of kilometers, via
all modes of propagation including surface ducts, the
deep sound channel, or sea-surface and ocean-bottom
reflections exhibit fluctuations in amplitude and phase
which are now recognized to be dominated by the multipath
interference of the acoustic field. The statistics of
these fluctuations as well as their relationships to the
dynamics of the ocean has been one focus of recent research
in understanding this important physical process. The
optimum design of sonars (e.g., the receiver operating
characteristics), underwater communications devices, and
in fact any svstem which operates via acoustic
transmission in the sea depends upon the knowledge of the

statistical behavicr of these transmissions.

The recognition of the dominance of the multipath
structure on the statistics, or the assertion that long
range multipath acoustic propagation in the ocean can be
modelled as a phase random process has been established
only within the last ten years, although the phase random
process or random walk problem has been under study since

Rayleigh (1880) (l], and is one of the classical problems

of mathematics and physics. Bergmann (1946) [2] was among
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the first to speculate that observed fluctuations in
signal intensity might be attributed to the interference
of many paths summing in random phase. Dyer (1970) [3]
formally applied the theory of a phase random process or
random walk problem to long range acoustic multipath
propagation in thé ocean, and was the first to investigate
the statistics of log transformed variables. Dyer also
showed that even in the presence of scattering randomness
multipath interference would dominate the statistics.
Thi§ research in fact indicated a basic shift from the
scattering models of earlier research which are more

appropriate for high frequencies and short ranges when

multipath effects are less important. Dyer also proposed
a model of distant shipping noise based upon the precepts
é of phase random multipath propagation and continued this
: research in a later paper (1973) [4], and most recently in
Mikhalevsky and Dver (1978) [3], results of the latter
B being included as part of this thesis. This model,
appropriaﬁe to distant shipping noise, assumes the noise
in a band is dominated by narrowband lines discrete in
frequency.
Mark (1972) (6] investigated the statistics of the

multipath propagation of finite bandwidth signals.

Employing a systems approach, he derived general expressions

e o =T - " ey o o S e




for the mean and variance of the received signal energy
in terms of the correlation function of the time varying
impulse response of the medium. He also showed that the
gamma or Erlang probability density function is often a
good approximation to the real pdf of the received
energy. Much earlier, Nakagami (7] had noted the
utility of an appropriately transformed Erlang pndf in
approximating the densities of received HF electromagnetic
radiation undergoing rapid fading, indicating the
broadness cf scope of the phase random model and its
general applicability. All these efforts, however,
concentrated on the amplitude (or related quantities) of
the signal and did not address the amplitude rate cr
phase rate of the signal.

Longuet-Higgins (1975) [8] in connecticon with research
on random sea surface waves (another phase random process)
introduced the joint pdf's of amplitude, amplitude rate,
phase, and phase rate as well as the marginal densities to
the growing body of knowledge of phase random processes.
It remained for Hamblen (1977) [9] to formally extend the

phase random analysis to the multipath acoustic propagation

process, incorporating the results of Longuet-Higgins (8]

and also S.0. Rice [10] whose extensive research on noise

statistics were also applicable to the long range acoustic




propvagation problem. Hamblen (9] also established the

dependence of the probability density functions for a
single narrowband acoustic source on the two parameters
oi, one-half the mean square pressure at the receiver,
and v?, the single path mean square‘phase rate. He also
verified the basic results with data from an ocean
acocustic propagation experiment.

Concurrent with the development of the phase random
model of multipath acoustic propagation, much research
was and is being conducted on another important aspect
of the problem, namely to discover what ocean dynamic
processes are the driving mechanismé and how parameters
of these ocean dynamic processes are related to the
parameters of ‘the acoustic field, ci and v?. Most
notable perhaps is the recent research of Dyson, Munk,

and Zetler (1976) [11l] who have proposed a theoretical

model relating the dynamics of internal waves in the ocean

to the fluctuation of the acoustic field. However, this
model appears to have serious limitations at low
frequencies. In fact, little research has been reported
on the low frequency cases.

In the following paragraphs I will introduce the

research reported on in this thesis. There are three

basic areas in which significant progress has been made in

sl
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understanding the statistical kehavicr of multipath
acoustic propagation: (1) the single narrowband source,
(2) finite bandwidth and/or modulated sources, and

(3) multiple sources or receptions. An extensive

analysis of data from acoustic experiments in the ocean

as well as a computer simulation of phase random multipath
acoustic propagation not only increase our confidence in
this new understanding, but reveal new information for low
frequency signals about the driving mechanism of v?, the

single path mean square phase rate.

The Single Narrowband Source

I derive for a single narrowband source the pdf's
for the time rate of change of the sta (short time average)
mean square pressure, ¥, and the time rate of change of

the level in decibels, ﬁ, results which are unique to this

Py
-

1
function only of v?. This result is of particular

thesis.. The pdf for A is independent of ¢; and is a
importance as it affords a method of measuring v? from
ocean acoustic data without error due to uncertainties in
the signal carrier. Included in this analysis are the
joint densities P, . (x,%) and PA'A(A,A) and their
characteristic functions, also unique to this thesis.

This analysis in fact completes the family of first order
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and joint pdf's for a single narrowband source.
Appendix A contains a list of all the first order pdf's,
their characteristic functions, means, and variances as
found by me, and earlier as found by others, so that a

complete set can be referred to.

Finite Bandwidth and/or Modulated Sources

Many acoustic signals of interest received in the
ocean have bandwidths which are not narrow, and carriers
that may not be stable or may be deliberately modulated.
In applying the phase random model of multipath acoustic
propagation, it is necessary to assume that the spectrum
of the received signal is narrow, and that in homodyning
the signal the spectral mean is zero (8,9]. Clearly,
the signals mentioned in the beginning of this paragraph
would violate these assumptions. I show, however, that
the amplitude and amplitude rate statistics (including
PA(A) are independent of finite bandwidth and/or carrier
modulation effects. The multipath phase rate, é, is
sensitive to these effects, and it is the pdf for é which
must be modified.

2

The pdf for 5 is in fact a function of v°, as well as

the bandwidth, and/or parameters of the modulation.

Bandwidth effects can be neglected when B << 2v, which is ;
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therefore a criterion for what is meant by "narrowband”
in the ocean. Furthermore, this analysis reveals a
method of separating and understanding the source induced
modulation independent of the ocean induced modulation

or vice versa. 1In addition to solving for the pdf's of

& in the presence of bandwidth and/or modulation, I solve
for the crossing rate statistics of phase for these cases

as well.

. Multiple Sources or Receptions

The statistics of the received signal amplitude and
amplitude rate when there is multiple source structure
depends on the exact nature of the received multi-source

3 signal and the anaiysis performed by the receiver. I
consider two basic cases. First, I assume the

y | receptions (one per source) are disjoint in frequency in

the analysis band and can be separated and summed

incoherently (that is, without concern for phase). I

assume, therefore, that each of the receptions/sources

are independent, thus the analysis band should not include
g harmonics of a signal already in the band. This type

of analysis is motivated by the structure of distant

shipping noise [4,5]. For the second case, I consider

RSP A .

the receptions to be at or so close in frequency that they




must be summed coherently. Note that the dividing line

between case one and case two depends upon the resolution
of the receiver. Most all of the pdf's I derive for the
amplitude and particularly the amplitude rate for these
cases are unique to this thesis. Where I have been
unable to derive the exact pdf analytically or in which
the exact solution is extremely time consuming to obtain
even with the aid of a computer, I have in most cases
found an approximation based upon Edgeworth's series.
This approximation is shown to be excellent in the main
lobe of the density but performance is degraded in the
tails.

I use the analysis of coherent sources to model the
effect of ocean ambient noise on the pdf's for a single
narrowband source. The pdf's are expressed in terms of
the SNR (signal to noise ratio). 1In light of this
analysis, I am able, as well, to extend with only slight
modification all the frequency disjoint multiple source
solutions to include the cases when both coherent and
disjoin£ source structure is present in the analysis band,
or for noise which is continuously distributed over the
passband.

The reader is forewarned that the sections of this

thesis on multiple sources (see Table of Contents) are

E;
|
.
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lengthy and in many cases quite tedious due to the
complexity of the analysis. Table III is provided (page 143)
to aid in understanding the organization of this material
and to aid the reader in finding that analysis which
is most pertinent to his problem. The analysis of the
statistics of multiple sources which is not immediately
motivated by any current ocean acoustics problem of
interest is presented for completeness with potential for
application to.future problems, even perhaps in areas ’ ;
t~ unrelated to acoustics. For example, the solutions for
Px(x) , using the terminology of Queuing Theory, are in
fact the pdf's for the interarrival times of cascaded ) i
Poisson processes which are unique to this thesis and, ‘
to my knowledge, not to be found in Queuing Theory

literature.

Computer Simulation and Data Analysis

A computer simulation of phase random multipath s
propagation is developed to assist in and to check the
theoretical analysis. The simulation demonstrates the
independence of the exact nature of the pdf for én
(the single path phase) to the statistics when there are

at least four propagation paths from the source to the

receiver. Of importance is the confirmation of the




generally accepted criterion that N > 4 paths resul:ts in

an almost fully saturated phase random process, and péf's
for the limiting case as N -+ =» suffice. The simulation
allows me in Appendix C to compare the theoretical
pdf's, many which I derived, for N 5'3 to the computer
generated histograms with excellent results.

I analyze data from two ocean acoustic experiments.
One was conducted near Eleuthera in which two CW signals
at 220Hz and 406Hz were transmitted approximately 300 km
northeast towards Bermuda and received by drifting
sonobuoys [12]. These data support the theoretical
pdf's derived in Chapter 1. Furthermore, the modulation
theory uncovered a heretofore unrecognized modulation
in the phase rate data due to errors in the sonobuoy
tracking system that has dramatic results on the
statistics for the phase crossing rates. These data are
also consistent with a model of phase random multipath
propagation resulting from the interaction of the acoustic
field with internal waves [ll].

I also analyze data taken in the Pacific in 1973
known collectively as the CASE experiment [13] in which
CW signals at 15Hz and 33Hz were propagated to ranges

varying from 250 km to 450 km. These data were

deliberately modulated and the predicticons derived
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theoretically in Chapter 1 are once again confirmed. The
analysis I used was capable of determining the bandwidth
of the modulation from the received multipath signal

with an average error of 8%. Where previously there had
been some problems in the consistency of the data with the
phase random.model, the modulation theory successfully
lays these problems to rest. These data, however, are

not consistent with the internal wave model andé this
analysis has brought sharply into focus a shortcoming

in our current understanding of the driving mechanisms of

vz

, particularly for low frequency signals. Correlations
I have derived appear to support, though tenuously without
additional researcﬁ, either a rough scattering or tidal
mechanism to account for the fully saturated nature of
the CASE data.

In Appendix D, the effects of amplitude parameter
variation are discussed. This analysis is aimed at
uncovering'the effects of temporal variations in the

total energy of the signal during the observation period

on the statistics of the received multipath signal.

[
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CHAPTER 1

ANALYTICAL TREATMENT

1.1 Single Narrowband Source

For a narrowband signal the phase-random model of
multipath acoustic propagation predicts that the sta root-
mean-square pressure, p, is a Rayleigh distributed random
variable [3,9], its rate, 3, is Gaussian {9], the multipath
phase, ¢, is uniform, and its rate, $, is distributed
according to a density first given by M.S. Longuet-Higgins
(8,9]. The transformation x = pg? yields the density for
the sta mean-square pressure which is exponential (3],
and following Dyer (3] the transformation A = 10 loglax
gives the density for the level in decibels which is
Log-Rayleigh. To complete the family of first order
densities for a singie narrowband source, I nave derived

the densities for % and .

1.1.1 Derivation of Pi(X) and P (A)

For phase random multipath propagation the joint

density of the sta rms pressure p and its rate p is given

by (8,91,
al 2 o
Pp'.(p,p) = - 2 T, eXP [: - Oq - (1.1)
cl“ /ncl D) | ch Zsl*v‘ 2




-35-

where v? is the single path mean~-square phase rate,
cngrzsu (12)
A B .

and N is the number of propagation paths, r is the single
path amplitude, and u is the long-time average mean-sguare
pressure.

For x = p?

we have ¥ = 20f. To find +he pds
(probability density function) for ¥ I first solve for
the cumulative distribution function (14 of % by
integrating over the joint density of o and b,.

Egquation (1l.1).

%
P '(plb)dpdb ’ ).( > 0 (1-3)

Pegl®) = PP

<X

o——8
§ —

The pdf for % will be given by 33_7( P, (). Combining this
result with Equations (l1.1) and (1.3) differentiating
under the integral sign and integrating once, I obtain

the result

} y =P<K<® (1.4)

P.(%) =
x(‘)
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The absolute value results from the analysis for ¥ < 0.

Equation (1.4) is the Laplace pdf (14. The variance of ¥

4 is given by
2 b,,2
ci = 80,V

The pdf for A is solved in the same manner. First I

find the pdf for ¥ where y = lnp? and thus y = 25/p,

-

therefore,
oy = O .
Pol¥) = 33 J f Py plespldedd , ¢>0 (1.5)
0 0

As before, I differentiate under the integral sign and

perform the remaining integration to obtain

Ry (§) = 1/2? —w<f < (1.6)
2[; Y¥*j3/2

+
4vi

Making the final transformation A = ¢y, where

e = 10 logloe = 4,34,.. (this notation will be adhered to

in the remainder of the thesis), I obtain the final result Ly
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1‘\/5 I} -oo<‘\_<co (107)

This density is in fact of the same form as P$($) (see
Equation A8 in Appendix A). The second moment of this
density is infinite. Physical insight of this phenomenon
can be obtained if one visualizes the random walk problem.
The amplitude of the vector is p and its phase ¢. When
the amplitude of p goes to zero as in a deep fade it is
easily seen that the phase can undergo very rapid changes.
Likewise because A = €20/p it is also clear that A can
assume very large values when p is small. Thus both A
and $ are governed by thé same form of pdf and their
variances are infinite. It is also noteworthy that

while the pdf's for 5 and ¥ depend upon both 61 and v,

Equation (1.7) depends only on v.

1.1.2 Joing,DenSitigs of Amplitude and Amplitude Rate
and Crossing Rate Statistics

In ordef to complete the family of joint densities
of amplitude and amplitude rate for a single source, I
have derived P_ .(x,%X) and P -(A,A). This analysis also
Xr ¥ AN
provides an alternative method for deriving Pi(k) and

PK(A) to check the calculations of the previous section.

In aéddition, I derive the two-dimensional characteristic
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functions {14] which will be of significant importance when

I investigate multiple sources.

1/2 l . -1/2

* we have p = ¥ and § = 3 XX . In

For x = o
order to solve for Pxi(x&) I make a two dimensional
¥
transformation on Pp 5(p,é) (Equation 1.1) as follows:
&

172 1 -1/2

~2 T 7)(')(
L - o . . - - .
eri(x'x) = 0% J Pp’p(p,p)aodp (1.3)
o) -

By differentiating under the integrals in Equation (1.8)

I obtain
. 1 X %2
P, o (XsX) = ————— expl- - 1
XX 0 40, *v/ZTYX 20,2 8ya,?v?
1 1l R
X > 0, and -=<y<=» (1.9)

The two dimensional characteristic function or two

dimensional Fourier transform can be defined as
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® iwx1+ic'x2
M (o3 = P N ) ]
Xy % L L XX, KuX2)® dx,8x,  (1.10)
B o y
or PX’X(x,X)
‘I
- -] -] [
Y = . oy o lwx + 10¥ .
MX’X(m,U) j J PX,X(x,x)e éxdyx (1.11)
- o

Performing the double integration yields

1l
MX:i(m'c) = (1.12)

- 3 2 B 2.2
1 120l w o+ 401 vo

Recalling that y = lnyx, we have yx = e¥ ana X = ye*.

Thus,
[ ] a Ld L ]
PY:?(Y'Y) ¥ LT3 f J PX'X(X'X)dXdX (1.13)
0 -0

As before I differentiate under the integrals, and make the

c¥ to obtain,

final transformations A = €y and A




3
. exp ( A) 32
P\ A(A’A) = —.—-2._8_— exp -exp(.‘l)[ 1 + A
e 4e?0,3v/2T € 20,2 8eglg,2v?
1 1l 1l
-®<A<®=, and -o< <o (1.14)

The two dimensional characteristic function of PA A(A,A)
4

(Equation 1.14) is

MA,A(“'°) = 25v|c|(883|clclzv2)i€wx (2ev]|al])

l+icw

e o +(1.15)

where 3z(x) is the modified Bessel function of order z.
Performing the integrals over x and A in Egquations
(1.9) and (l.14) respectively yields the marginal densities
of x and A which are given by Equations (1.4) and (1.7)
respectively as expected.
Following Rice [10] and using Equation (1.14) I
derive the mean axis. crossing rate for the ampliﬁude of

the signal expressed in decibels.

- -]
G(Ao) =ZI APA,A(AO’A)dA
(o]

'.I‘ =
EfAla=4] (1.16)
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Thus,
® Aexp(f%Ao) Ao 1 A2 .
G(Ao) = JZ-—;——;———— exp -exp(Ef)[ " + — z] dA
o 4oy V2T 20, 8elo,®v
and
Ao Ao
Zvexp(ig exp(?r)
G(Ao) = ————— exp |- ——————]| . (1.17)
cl/fF 2012

If we transform Equation (1.17) to determine the axis

[ crossing rate for °o = exp(Ao/Ze)

; 2ve p 2
3 Glo,) = —= exp |- — (1.18)

Equation (1.18) was previously obtained by Dyer and
Shepard (15], and Hamblen [9].

1.2 Multiple Sources

In this section the statistics of the amplitude and

amplitude rate variables are analyzed when the source

"‘9




structure consists of many independent acoustic generators

distributed at various frequencies across the bandwidth

of the receiver. It is assumed that propagation from each
source is phase random and multipath. aAn initial assump-
tion is also made that each source radiates at a different
frequency. This problem is applicable to the case of deep
ocean ambient noise due to distant shipping [4]. For
this case the spectrum of ship radiation is assumed to be
dominated by lines disjoint in frequency, so that each
ship contributes as many independent sources as

there are lines within the observational bandwidth.

(Note, the observational bandwidth cannot be so large as
to include harmonics.) Henceforth line and source will

be used interchangeably. Furthermore, the analysis
assumes that the Fourier components of the received

signal over the observational bandwidth are squared and
summed. Thus, by Parseval's theorem it is the square

of the signal amplitude, in this case x = p? which is
summed for each source, or Xeotal = nzl Xn for L sources.
As noted in Reference [4], this model breaks down when
sources cannot be separated in frequency, and then the
model must be modified to include the effect of two or

more sources which may be radiating at the same £requency.

This cocherent problem is treated in Section 1.2.3.
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1l.2.1 Amplitude Densities

Dyer [4] first investigated the amplitude statistics
for the multicomponent case and developed the framework
for the problem which will be followed here. Three
categories are defined: (a) all line components, L in
number, arrive with the same long-time average intensity:
(b) all line compohents, M in number, arrive with different
intensities; and (¢) N groups arrive, each with Li equal
intensity components. As an example, Case (c) was
applied in Reference [4] to noise as might be measured
at low frequencies in deep water near Bermuda.

As pointed out in Reference [4], and as will be
shown in Section 1.2.1.3, use of the models describing
line component noise often entails considerable
computational tedium. This complexity often motivates
adoption of approximate methods, which will be discussed
in Section 1.2.1.4. Cases (a) and (b) are treated in
Reference [4]. Exact solutions for N=2 and N=3 of
Case (c) are derived in Sections 1.2.1.1 and 1.2.1.2
respectively. It is true that the exact solutions of
N=2 and N=3 may be of little practical value as most
‘cases of interest will probably contain many mecre than

three groups. The analysis is performed, however, to

build the theoretical framework of this problem, perhaps
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enabling someone else to solve it exactly in all
generality, and more importantly in relation to this
thesis research these exact solutions will provide a check
for the approximate solution which is presented in

Section 1l.2.1.4.

1l.2.1.1 Exact Solution for N=2, Case (¢)

Consider L line components, each with the same

long-time average mean square pressure u. The

probability of the sta mean square x is B 4]

L L=-1 -ay

P (X)’-"a—(LIn?!— , x>0, a>0 ;

XLE

L = 1'2’000 . (lolg)

where a = 1/u, the mean ux = Lux, and the wvariance
L
a; = Ly? = u; /L. Equation (1.19) is the Erlang or
L L
gamma pdf (see Appendix B).

Let X, and x, be distributed according to
Equation (1.19) but with different By and different L
(i=1,2). Further, let X = Xp+Xge Then

X
P x(x) = [ P, (3) Pz(x-;)d;. If we make the change cf
2 0




variables ; = xt,

1
P (x) = % L T(1-t) 2 Tetx(az-an) g

a,lla L2e22X p sp,-1 (! or,-1 L,-
2 x 2 1 j "
X T(L) T(Ly) 0

.« (1.20)

The integral is the confluent hypergeometric function

defined in its integral form [15,17]:

1
M(a,8,2) = —8 ] o2t 21l (qg) 8-l ¢ (1.21)
r(6=a)T (a)

This is a well tabulated function [18,19,20] alternatively

defined by Kummers series (absolutely convergent):

u(aaz)=1+°z+(a)z+ +(a)z+ 1.22
rQy —6—- -—S—-T PR —-;—"'— s o _(. )

where (a)n = g(a+l) (a+2)... (a+n=-1), (cx)° z 1.

Applying Equation (l1.21) to Equation (1.20) I obtain
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the desired result:

alLlaszxL2+Ll-le-xa2
P I (Ly+L,)

with

= + =L + L
uzx uxl uxz lul 2112

= 2 2 = 2 2
x - %, 7%, Li#] + Loug

If a; = a, then as expected, Equation (1.23) reduces to
Equation (1.19) with L = Ll + Ly, upon noting from 1
Equation (1.22) that M(«,68,0) = 1.

To obtain the density of the level in dB I make the

now familiar transformation A = € lny in Equation (1.23):

N alLlasz :
P ( [ e e — M L L +L (a -3 )e
b T (L, + Iy) A B TALNS |

(A/E)]

expl:g- (Ly+L;) - a, e(A/E)] (1.24) ;




The statistics for A are:

uA = e[lnuz - Y + Sl(Ll+L2) + Ql(allazlLlle)] i
(1.25) J

czsez“z-S(L+L)-Qz(aaLL)
A 8 2'71 2 1'71/=2r"1~2

where

Lil
S, (1) = 0, s, (L) =
1 L w=]

£+

Lgl 1
s,(1) = 0, S,(L) = vl
2 r =2 w=1l wi

L n '

a, ™l = (L,) a,-a,| n-1 ;

Qu(ayag,LyiLy) = |3 A | TR |
2 n=l ° 2 k=0 1 ™2

n
az-al M+n-1 k-1

1
k=M+1 o=M pk

Qz(alraerlle) = 2 3

2 n! az

L
al b (Ll)n
n=2
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where M = L, + Ly, and y £ Euler's constant = .5772.,.
Note that if a; = a,, Equations (1.25) reduce to
ﬁ Equations (4) of Reference (4] as expected.
For non-integer values of L, and Ly, Equations (1.25)

can be expressed as follows:

L n
a l o (L.) a,—-a
l} ) 1 n [ 2 l] [w(L2+Ll+n)]
n=

(1.26)

21
2,

n
1] [V (L,+L,+n) = 1na2]2

1e (L) (a,-a
<°R+uf\)/az-[ I 1n[z

n=0 n! az

1 .
+ Y (L1+L2+n)
H where

P(x) is the Euler Psi function [21]

and where i

PP = v




-49-

Equation (1.23) can also be expressed in terms of the
incomplete gamma function ([22,23] which is a special case

of the confluent hypergeometric function.

1.2.1.2 Exact Solution for N=3, Case (¢)

I now consider three groups with Li (i=1,2,3) sources
in each group. Let 3¢ = X1'+X2'+X3 = 2X'*X3 where the
Xy (i = 1,2,3) are distributed according to Zgquation (1.19)
(with different means and L;) and ,x is distributed -

according to Equation (1.23). Then:

X
P (x) = J PX (3) an(x-C)d«:

X
3 0 2

As before, let 7 = yt and

Ly L, L, L,+L,+L.-1 <-a.x
alla22a33 1T T

T'(L,+L,) T (L,)

- I (1.27)

P3x(x) =

and
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1l
L3-l L1+L2-l tx(a3-a2)
I = j (1-t) t e '34[Ll,Ll+L2,tx(a2-al)]ct
0
e o+ «(1.28)

Equation (1.28) is evaluated by expanding the confluent
hypergeometric junction in its series form (Equation 1.22),
and integrating term by term. When I combine this

result with Equation (1.27) I obtain the result

L. L, L L,+L,+L.~1 -a,¥
ala2,3 J1TR2™TE TR n a0m
P (x) = 1 72 %3 z 2 -1 1’n
3X T (L, +L,+L.) =0 n! (L+Lo+L3)
1 7273
. M[L1+L2+n, Ll+L2+L3+n, x(a3—a2)] (1.29)
with

Max T Lymg + Louy + Lau,

2 2 by 2 2
03x = Llul + ngz + L3u3

Deriving numerical resu.cs from Equation (1.29) is

straightforward by rewriting the summation
> P4 -




S
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L= nzo ©a™n (1.30)
where
x(ay~a,) L,+n-1
€n T n T.+L.+L.+n-1 Sn-1 7 C°=3L (1.31)
172773
and (18],
b(l+b=~2z) b(b=-1)
my,*=—m,_; +t—m _,. (1.32)
a az n-1 az n-2

In thase I define m, = M(a+n, b+n, z) and, a = Ll+L2,
b = L1+L2+L3, and z = x(a3-a2).
From Equation (l1.29) the density of the level in dB

is obtained as before:

The statistics of the level are:
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2
2 2|7 - R2
o) =€ 17; SZ(L1+L2+L3) Rl(al,az,aB,Ll,Lz,L3)

3!
+ Rz(al,az,a3,Ll,L2,L3{] (1.34)
where:
L L P
1 2
a a © (L,) a,~a
1 2 l'p 2 71
R, (2,,a,,25,L,,L,,L.) = |— - Z ]
1YL T3 LTS {a3} [a3} p=0 p! { a, J
@ (L,+L,+p) a,-a ]np*n-l
. Z 1 72 n 3 2’ 'Z 1 :
n=0 nt ay J k=0 Ll+L2+L3+K

for p+n > 0, and

v 1 2

a a o (L,) a,-a
= 1 2 l'p 2 °1

RZ(al'aZ'a3'Ll’L2’L3) = 2[3— [ } pZO [

n!

I
n=0

- n -1 g-
(Ly+Ly+p) [a3 a21 Z+p+n-1 2-1 1




for p+n > 1, in which & = Ly+Lo+L,.

Note that for both N=2 and N=3 one can judiciously
choose which ai,Li will be designated al,Ll; az,Lz; or
a3,L3 so as to insure the fastest convergence of the terms

involving infinite series.

1.2.1.3 Solution for Arbitrary N, Case (c¢)

In this section I will derive an expression for the
pdf of the sta mean square pressure x, for an arbitrary
number of groups N, using Laplace transform techniques.

Let

Xn ' (1.35)
whare NX denotes the random variable whose pdf we seek
and the Xp are Erlang distributed random variables,

distributed according to Equation (1.19) with

arbitrary order L,- The Laplace transform of Xn is
a, n
PX (g) = S—;Tn ’ s > -an (l.36)

where a, = l/un.' From the properties of Laplace transforms




P

and independent random variables

N a L
@x(s) = I (82— " (1.37)

N n=1 S + 2n
and thus,
3= N a L
1 n n _sy
P (X)) = 5= f I (=) e ds (1.38)
Nx 273 Lie n=1 S + an

Though Equation (1.38) is attractively compact, it is
computationally tedioﬁs for most cases of interest, i.e.,
large N and large Ln as you might expect with many ships
and many lines. To carry the analysis a bit further, I

make a partial fraction expansion of Equation (1.37),

L
N L N n C
() = (I a_ ™ —=ak (1.39)
6LX n=l n nzl kzl (s + an)

It is clear from this expression that P X(;() is a linear
N
sum of weighted Erlang distributions, and the problem is
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reduced to finding the coefficients an. I take the
inverse transform of Equation (1.39) by applying the

calculus of residues to obtain

k-1

1 d k
Cak = 1 TR-177 PR [(s+a)) @x(S)] (1.40)

N N s=-2a

n

and finally,
L k-1 -a.nx
PL(x) = ( 1 anLn) ? i anfk_l?' 141
NX n=1 n=1 k=1 :

The generally intractable nature of Equation (l1.40) leads
to the introduction of approximate methods discussed in

the following section.

1l.2.1.4 Edgeworth's Series Approximation, Case (c)

As before,

N
L iglxi

where the x; are independent random variables distributed




R it

=56=

according to Equation (1.19) and in general with

different long term average means By and different

number of line components L;. Although PNx(x) cannot be
solved exactly for N > 3 without considerable computational
tedium, it can be approximated in the main lobe, and as

we shall see, quite accurately and easily by an

Edgeworth's series [4]:

P 0 =212 - v 2@ « & 2@
NX NX c !
+ 3 2208 gy 2 s z(3) (¢)
8! s 5T S
| X
) 37 (7)
= FT YgYe2 (§)
|
= %%‘ Y;Z(g)(i) + ... terms in higher order
; moments e o {1.42)

where
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- Lro2
X~ ¥yx 1 7%
E = g ’ Z(E) = 1/2 e ’
NX (2m)
Z(n)(E) = pth derivative of the Gaussian pdf,
3
|93 K
Yg = coefficient of skew = —X = —3- (1.43)
o o}
X X
13
Hu K4
Yo = coefficient of excess =~—71- 3 = - (1.44)
g g
X X
nux S nth central moment, and
Kn E nth order cunmulant or semi-invariant.

The point-by=-point error in the approximation of
Equation (1.42) is of the same order as the first term
} neglected [14].
| A computationally more efficient expression of
Equation (1.42) can be derived by actually taking the

derivatives of Z2(§) as indicated with respect to § and

collect terms in powers of £. I have used only the first

four terms in Equation (1.42) and as will be demonstrated

later, this will be entirely adequate for practical
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computations.
3y 54 Y
. 1 e "'s s
PNX(X) =5 z2(5)41 9T T3~ T £
NX
5v2 v, Y, Yo 5v2
s el., s . e S|,
i *[T'T]Qz"ﬁ%’*n"zrg“
| 10 _
¥ (1.45)

It should be noted that because Egquation (1.45) is an
approximation, negative values may be obtainea for some
regions in the tails. 1In fact, the Edgeworth's series
performs best in the main lobe of the density and worse
in the tails. The mean and variance is respectively

i (evoking the properties of sums of independent random

variables {4]):
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For the gamma pd< ([14]:

K, = WLl (n) (1.48)
Furthermore, for a sum of independent random variables ([14]:
Ry ¥ 3%, + -.. + (K (1.49)

I use Equations (1.46) through (1.49) to obtain the

coefficients of skew and excess for P x(x):
N

=L ? 2L, 32 (1.50)
Ys T gy ghp it )
X
l N
a i=
X 1

Yq and Yg are zero for the Gaussian pdf and attain maximum
values of 2 and 6 respectively for the exponential pd:Z
(which is the case of N=1 and L=1).

Before examining the nature of A and Yo more closely,
let me return to Equation (1.42) and make the log

transformation to obtain the Edgeworth's approximation for
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the level in dB:

y:.10

1 A/e Ys (3) Ye (4) s
PNA(A) Ay T e 2(n) -37 2 (n) + g7 2 (n) + —7— 2(n)
NX
L) . -(lnSZ)
or alternatively,
3y, SYI v 5v2 v
1 AJe e__'s__s s__'e 2
PNA(A) %ecxe Z(f\) l+ -3 -3+ (-0
N
Y Yo 57 10v2
S S S (1.53)

tep et e

where

no = exp (A/e) - u _.
NX N*

As a result of the fact that the transformation

A =10 loglox is nonlinear, the statistics of A cannot be

found without exact knowledge of P \(A):
NA
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X
N o M
(1.54)
[- -]
g%, + pu?, = ¢? I (Inx)?2 P _ (x)dx
i Nt NX

0

Using Equation (l.41l) in the previous section and inter-

changing the order of summation and integration I obtain:

L ®
N N n C
k k=1 _=anpX
U, =( I aln) 1 1 _n J Inyx e ~DBigy
Nt n=l "n ' 25 k=1 (k=17 .
(1.55)
L
N N n C
2 2 o (e? Ln __nk 2 k=1 _=—apx
Tgh Trga T € L 1L TenT GRo T e T
Evaluating Equations (1.55) yields (241]:
L
N N n C
Moo= (e Hai’“)Z Z—’%W(k)-lnan]
N n=1 n=1 k=1 a,
(1.586)
N N I&zc

2 2 2 » L nk PO
oy +u?, = (e T ai™ ] Z-—k—{[;ﬂk) - lna ]*+y (k)}
Tyt n=l ® nZl kala® n




Though Equations (l1.56) are exact, they are predicated on
the knowledge of the an's given by Equation (1.40),
which in turn motivates an approximate solution.
Unfortunately, direct integration of the Edgeworth's
series is not possible because term by term the integrals
diverge. An approximation can be made, however, using
the first term only, that is, to integrate the log

transformed Gaussian. Thus,

- -]
n (x=u_)
oy < j 1ny exp[;<————x—;]dx

(1.57)

. ” (x=u,)
02A+ pzA R £ I (lnx).zexpl} T—f—]dx
X 0 X

The integrals in Equations (1.57) are not straightforward
but can be evaluated as follows. First, the square in the
exponential is expanded, and the constant term removed
from under the integral sign. Second, the change of

1/2

variables ¥ = u is made:
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29 -l

~ ce <9X J 7 H
u A V  memtte—— u

N 20X¢§n

(1.58)

LY

2 1Y)
<:2A+pzA ee X I (ln/-) exp (- —+—f- Ya)du
I

202 ¢
X 0 X X

Third, the radical is removed from the 1ln and the
exponential of YU is expanded in its power series.
Fourth, the order of integration and summation are

interchanged and finally I have,

u 2 lnu exp(--E—)du

m J (%m-é)
252
X

(1.59)

. - ™ u. m = (5m-3)
czA+ uzA nee 2 ) —J-'—(—X) J w2 ¢ (lnu)? exp( zuz)du
o

2
X N X

1 The integral in Equaticns (1.59) can be evaluated [24] and

the final result is obtained:




|
F

vZ2u \m
1 1 1.f 1 .1
by - ee X 7 L [___X} r<5m+-7>{w(7m4-5)*-ln 25;}

and (1.60a)

u

c?e 29% = 1 (TR 1 g

prtuiy = ——— I oF {__x} rigm+3)
N N’ 8/7 m=0 X

- {[w(%m%) + 1n202]? + w‘(%m%)}

Although the Eégeworth’s series will provide an accurate
approximation to the density we seek, the best approxima-
tion for the moments of A are those of the log transformed
Gaussian given by the statistics of Equations (1.60).
Though not immediately derivable from Equations (1.6Q)
when c; is small, Dyer [4] obtains, by taking an expansion
around the peak of the density,

Y = [1nu

- 2223
g X (cx/ uXH

(1.60b)

2 2 2 2
5 = (g <




Returning to the Edgeworth's series, anéd to gain more
insight into the way the ccefficients of skew and excess
(ys and ye) behave, depending upon the number of groups Y,
and number of line components in each group Li’ I have
plotted Yg VS L in Figure 1 for N=1 and N>3. 1In like
manner, Y, is plotted in Figure 2. Each was constructed
as follows: Each group N has the same number of line
components L, and the long term average mean By of each
group is quantitized in 3dB steps, i.e.:

i° (l

i-1l
] relative units

N

i = 1,2,3,...,N

Fer the case N=1, Eguations (1.50) and (1.51) vield:
v = -1/2
g 2L

Yo = 6L

In the limit as N+ =, Equations (1.50) and (1.51)

converge to:

v = (1.48]1"172
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Y, = (3.60L7"

The convergence is very rapid. As evidence, the exact
value for N=3 is only about 10% greater than the limiting
value.

From Figures 1 and 2 it can be seen that when N=1,
the cocefficient of skew and excess closely approximate
Gaussian values when L> 6. When N> 3 they closely
approximate Gaussian values for L>3. More justification
for this conclusion is given in the next several
paragréphs.

For further illustration of significance of the value
of g and Yo I consider the case N=1 and L=2. For

simplicity, I let u=1. Then,

xe™ X (1.61)

Px(x)

Equation (l.61l) is plotted with the Edgeworth's series,
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Equation (1.45), and its corresponding Gaussian in
Figure 3. Note that the large values of Ys and Ye would
predict the Gaussian to be a poor approximation, and so
it is. The Edgeworth's series, on the other hand, is
quite good except at the tails.

Taking the log transformation of Equation (l.61) for
the same simple case (N=1 and L=2), I have the density

of the level in 4&B:

P, () = é exp{ze—A- - exp (A/e)} (1.62)

Equation (1.62) is plotted with the Edgeworth's series as
given by Equation (1.53) in Figure 4. Again, the values
for Yg and Yo suggest the log transform of the Gaussian

to be a poor approximation, and indeed it is. 3But the
Edgeworth's series for the density of the level is
remarkably close. Thus, I conclude than when g and Ye
are large, the Gaussian is not a useful approximation,

but the Edgeworth is, especially when dealing with the pdf
of the level. Also, it is interestiné to compare

estimates of the mean level. Eguation (l1.60a gives

AT 2.28dB while the exact value gi&en by Equation (1.25),
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Fig.3 Probability density for the case N=I, L=2,0nd p=I[.
Ys =/2 and ye:3. The exact density is shown

with its Edgeworth approximation and its
corresponding Gaussian.
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Fig.4 Probability density of the level for the case plotted in Fig. 3.
Shown with the exact density are its transformed
Edgeworth approximation and its transformed Gaussian.




setting Ll = L2 =a;, =a, = 1, is By = 1.83dB.

As a second example, I consider Case (¢) of Figure 2
of Reference [4], with the specification N = 2, a,; = 0.3,
a, = 0.6, and Ll = L2 = 2, For this we have Yg = 1.14
and Ye = 2.04. The log transformed Edgeworth approximation,
Equation (1.53), is plotted with the exact density in

Figure 5. Here, Egquation (l.60a) gives uy = 9.16dB while

\
the exact value given by Equation (1.25) is By = 9.394dB.
The log transform of the Gaussian is not a good approxima-
tion, but here again the Edgeworth and the exact density
are for all practical purposes identical.

For a final example I examine a three group problem

(N=3) using the results of Section 1.2.1.2 to compare
with the Edgeworth's approximation and the Gaussian.

In this example, a, =1, a, = 2, a, =8, L, =2, L, = 4,

3 1 2
and L3 = 16. Using Equations (1.49) and (1.50), I £ind
Yg = .86 and Yo = 1l.28. Eguation (1.53) and the exact

density of the level as given by Equation (1.33) are
plotted in Figure 6 with the transformed Gaussian. Once
again, Equation (1.53) is exact for all practical purposes
while the Gaussian assumption will result in some error.
Thus, from our examples for Yg and Ya not too large,

i.e., < 1.5 and 3 respectively, the first four terms of

the log transiormed Edgeworth series adequately represents
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the levels, while the log transformed Gaussian reguires
Yg Ay Yo A% 0 for it to be adequate.

I now apply the foregoing analysis to the N=15
problem of Reference [4]. This problem involves
estimates of ocean traffic in thg North Atlantic.
Components from each of the ships are grouped with 3éB
guantitization in N= 15 steps, with components within each
group numbering as high as Li = 57, as is shown in the
first three columns of Table I. With the use of
Equations (1.50) and (1.51) I find Yg = 1.025 and
Yo = 1.743. 1In Table I, the contributions of each of the
.groups to the mean, variance, and coefficients of skew
and excess are also tabulated. As is clear from the
table, groups 9-15 contribute very little to the overall
density, since the variance, skew, and excess do not
change (to within three decimal places) beyond N= 8.
Reduction to an eight group problem, however, is not
much of an improvement over the 15 group one. But,
Equations (1.46), (1.47), (1.50), and (1.51) are very
simple for any N, and in comparing Yg and Ye for this
case with those of our previous examples, we can expect
the density of the mean square pressure to be closely
aporoximated by Egquation (1.45). Similarly, Equation (1.53)

should yield the density of the level in &3, which for all
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practical purposes would be exact. Eguation (1.45) for
this case is plotted along with the Gaussian in Figure 7,
and Equation (1.53) is plotted with the transformed
Gaussian in Figure 8. The Gaussian pdf is seen to depart
significantly from the Edgeworth pdf, even for a case
having a very large number of line components such as
may be appropriate to an actual oceanic situation.
However, with reference to the examples above and

Figures 3-6, we are justified in expecting that the
Edgeworth pdf is virtually exact.

| As noted earlier, an analytical expression has not
yet been derived for the statistics of the lcg traasform
for ¥ > 3. However, I can estimate the mean from

Fiéure 8 to be (éupported by a numerical integration oI

Equation 1.53)
u, ¥ 7.2d48
A

The Gaussian assumption used in Reference (4] led to a
slightly higher value for the mean (®# 7.5d4B) as a glance

at Figure 8 would explain. Eguation (1.60a3 gives

Ky ¥ 7.51dB affirming the result cbtained by Dver [4]. The
standard deviation as computed in Reference [4] of 1.2éB
appears reasonable, again by inspection of Figure 8, while

Equation (l.60a)vields g, = 1.404d8B.
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Fig.7 The Gaussian and Edgeworth approximations of the
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We may conclude that when the number of groups which
add significantly to the overall density is greater than
3, then use of the Edgeworth serieé approximation can ke
quite valuable in estimating the pdf of the received
signal. While it may be tempting to use a Gaussian pdf

for values of Yg < 1 and Yo X 2, significant differences

A%
in the pdf for the mean sqguare pressure or the level
should dissuade us from this course. It is true that
the mean and standard deviation of the levels are less
sensitive to the differences between the Edgeworth andé
the Gaussian approximations, but the Edgeworth is not
much more diffigult to use and is thus to be recommended.
The Edgeworth's series approximation therefore
provides an easily implemented method of (1) estimating
the statistics of the level in 4B for even the most
complicated realization of Case (c), and (2) revealing
the extent to which the Gaussian assumption is a valid crne.
This is particularly valuable because one cannot merely
assume on the basis that N is.large that the Gaussian
assumption will be a valid one. The critical factor is
the amount ¢ energy in each group. If one or two groups
contain most of the energy, then the governing density
will be significantly different from the Gaussian and, in

fact, will mcra closely resemble the density that would be
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associated with the most energetic group.

If the tails of the pdf are the primary regions of
interest, then exact computer solution may be a viable
alternative for a complicated realization of Case (c¢).
It should be noted, however, that more terms in the
Edgeworth's series can be £aken to obtain any arbitrary
accuracy desired, or alternative methods such as the
Chernoff bound or "tilting" the density can be applied

(25]. These methods will not be discussed in this work.

1.2.2 Amplitude Rate Densities ;

In this section of the thesis I will derive the o
4
pdf's of 5, %, and A for the multiple source case. i

These rate variables are dependent variables with respect E
f! to the amplitude variables excert for certain special

éi cases. This fact introduces a great deal more

complexity than has been encountered up to now. Solution

for the joint densities of amplitude and amplitude rate

‘ are generally required before the marginal rate densities
themselves can be found. Solution of the rate density
‘ for one variable does not lead by simple iransformaticn

' to the sclution for the rate densities £for the other +two

variables as was the case for the amplitude.

In general, the rate variables depend ugon both :i,
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a measure of the intensity, and v?, the single path mean
square phase rate. This implies that there are a plethora
of different possible combinations of multiple sources
with different or same ci and/or different or same v?2.
The breakdown into the same cases emploved in Section 1.2.1
will be followed here, though their definitions must be
expanded to include v?. 1In Section 1.2.2.1 I examine
Case (a), the case of multiple sourcesg or lines in which
ci and v?® are the same for all source/receiver pairs.
This would apply, for example, to noise which is flat
across the passband of the receiver frcm a small
geographical area or sector. In Section 1.2.2.2 I
investigate various special cases when the di's anéd the

2

v may be different for each source/receiver pair, with

more general applicability, including Cases (b) anéd (c).

1.2.2.1 Multiple Components of Ecqual Intensitvy
and Equal Single Path Phase Rate

I will first solve for Pi (x) which is the pdf for

LE
% from L sources or components of equal oi and v:. From
L L
Xeotal = nil Xp? it is clear that Xeotal = nil Xp Thus

for this, and only this variable, we can employ all the
very nice properties of sums of independent random

variables. For the pdf of RLE
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Vi VYaeor X
<172
PXLE(x) = f f ...J Pi(yl)Pk(yz-yl)...Pi(x-yL)dy...dyL
. - 0(1063)
or
= 2L .
oy = L b 1wy
PXLE(X) 5T f o7 + mz)L e dw (1.64)

by making use of Mk(w) (Equation A6), where b = l/Zciv.

For x > 0, therefore,

(1.65)

P, (%) _pt 271 (L_ll), dL;_lI eme
XLE 27 Y dw (w+ib)

w=1b

Applying contour integration around the lower half plane
for ¥ <0 yields, as expected, the identical result given
by Equation (1.65) because y is symmetric. Applying

Equations (1.63) and (1.65) for L = 1-6, I obtain

D exp(=b|%|)

g

—

e
u
~|
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{?|<] + b} exp(-b| %]}

u
—
><l

"
-

() = w (63|%|2+3b2|%| + 3blexp(-b|%|)

X3E 16
P24E(i) = g% {b*[%]®+6b%|%|?+ 15b2|%| + 15blexp(-b|%|)
S Tisw (B%| %] "+ 10b* || 7+ 4557 | 4|2 + 10507 | %]
+ 105b} exp(-b|%])
pisE(x) = zhrr (b%[%| %+ 1505 %] " + 105b% | § |+ 420b° [ §]?

+ 945b2|%| + 945b} exp(~-b|%|)
.(l.66a=¢%)

Upon inspection of Equations (l1.66) the general form of
the density for arbitrary L emerges (which will be proven

below) :

L L
1 o~blkl

[S ) (L-1) 12-

(L+k=-2) !

L-k. L-k+1
n b
k=1 (k-1)!(L-k)!2

< 1%l

.(1.67)

- RN I .. i P SPEE A 2« . - -4
.. g, RO, -

[ WO
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Clearly, u. = 0, and in general
ALE

-]

J iL-k+n o~bX ag

(¢}

N

(L-1) 1227Y k=21 (k-1 1 (LK) 125°T

L-k+1

. .(1.68)
which, for n odd is 0, and for n even:
n 1 q (L+k=2) ! (L=k+n) !
Elxrg) = =1 L =T (1.69)
(L-1)12 b k=1 (k-1)!(L=-k)!2
Using the independence property (014 I get
¢ 2 = q2 = w2
E[XLE] = g5 8Lclv (1.70)

XLE

This result is identical to Egquation (1.69) when n=2.

A much more elegant solution for Pi (¥) will now ke
LE
developed. The approach yields the ccmplete solution for

the equal o¢? equal v? case including P, (3), P; (1), and
1 QLE ALE
all the joint densities of amplitude and amplitude rate.
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I begin with Equation (1.12). Because x . = VX
L n=1
Xep = n£1 X+ the x,'s are independent of

each other, and the xn's are likewise independent of each
other the joint density PX . (X,X) can be expressed as

' XLE
follows:

L x - -] . .
i 1 J J e 19X o719Xgudo
29 am (w+ 1(7%74-2oiv202)]

-l =R l

T (1.71)

which is just the inverse transform of the Lth

power of
Equation (l1.12). I use the calculus of residues and
perform the integration over w first, which has a pole of

. order L:

o bl

L [--]
! . L-1 T
. i 2mi d -iwy -10%
- P. . (X.%) = |== [ — {; _J e o
i Xekpg 1) (r-1)14n? J_ aulmt U
w = -i[ 1 . Zczvzcz) (1.72)
fai 1l *

and

R A
TR AT R A

vk
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L © 1l 2,22 . .
L-1 -(__f + 205veo)x - 1i0¥%
P i (X'X) = zc];t X [ e 20 1 do
XiXpLp 1} 2m@-1)t !
o o +(1.73)

Performing the final integration I obtain the desired
result, the joint density of the sta mean square pressure

x and its rate ¥ for L sources with egual ci and equal v:

3
L-3 .2
Py 06X = —X exp|-5iy - =d—
XeXepg ' (L—1)12L+lc§L+lv/i? 207  8O3ViX
.. L (1.74)

To find the marginal density PX (¥) I integrate over ¥
LE

in Equation (1.74):

XLE L X'XLE
to obtain:
/ _

B e s ety Tme—— — e - -
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L -
. 1l 1 X
P, (x) = T — * K
XLE [2°1] r (L) /275202 {4v2] L-%
L) L) .(1076)
where (L) is the Gamma function and Kv(Z) is the modified

Bessel function of order v. If we make use of the

identity [20]

L

-2 (L=-2+k) !
22

K (2) = _ e
L-3 k=1 (k-1)1(L-k) ! (22)%°t

it is easily proven that Equation (l1.76) is identical to
Eguation (l1.67). When ¥ is integrated out in
Equation (1.74), I obtain PXLB(x) which confirms the
result first obtained by Dyer [4].

The next step is to solve for the joint density of

p and p. This is easily accomplished by the following two

dimensional transformations of Equation (1.74):

a2 (0% r2pb
P (0,8) = f { Py o (XeX)dxdx (1.77)
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which yvields:

o2L-1 p? b2
P (o,p) = = - exp - (1.78)
Cibrg (L-1) 128 LS yaw 20] 203V

This result is rather remarkable. One can see immediately
that p and ¢ are independent as they are for the single
source caée and furthermore that § is independent of L,
and PbLB(b), the density for L equal receptions is in fact

identical to Pb(b), the density for the single source.

Integrating over p and o respectively in Eguation (1.78),

I obtain:
O2L-l 02
P (o) = _ expl- 2— (1.79)
e (L-1) 12% laiL 202

The mean and variance are respectively

/ZF ¢y (2L-1) 1!
u =
otE 2L

(L-1)!




where (2L-1)!! = 1e¢3¢5+¢¢(2L-1)

2 = 2y o 2
cp chL M

LE PLE

and

P, (8) = 1 -k 1.80
S N — = %P 2.2 (1.80)
LE ﬂclv chv

To complete the statistics for this case, I make the
final transformation A = ¢ ln x and i = eX/x in

Equation (1.74):

) eA/s % eA/e:
. a ° *
P, z+ (AA) = 5 [ J P. . (x,%x)dxdx (1.81)
A,Am 4 . aAaA o - X'XLE !

£o obtain:
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1. A ;
PA i\ (A,A) = T ixil[‘iiﬁ-f) E] exp 'eA/E 212 + 28‘7\22\)2]—l
rfrE 2¥ e TM vvET (L-1) 91  ETO9VY

Integrating over A in Equation (1.82) I obtain

1 LA 1 A
P (A) = exp |==— - =7 exp (=)

= 2 _
uALE = ¢(1ln ch y + Sl(L)]

and

where

-

£+
L]}
Q

Sl(L) =

i

.(1.82)

(1.83)
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[11]
o

1

Again this result was previously obtained by Dyer ([4].

Integrating over A in Egquation (1.82), I obtain

. - el
LE 27(L-1)! (1 + W)
The moments of A for the eqgual reception case are
interesting:
(
0 , n odd
} . n,n-L+%
‘ no,o_ nv2 YT (n-1)11(2L=-n=-2)1! n _ .
E[Afg] =4 ¢ oo r 3 <L (1.85)
] ’ 521-3_ L

Note that the single source case yields an infinite second

moment as reported in Section 1.1, however, for L > 2

the variance always exists.
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1.2.2.2 Multiple Components with Different
gi's and Different v<'s

The most general case of this problem is Case (c) of
Section 1.2.1, i.e., there are many groups N, and within

each group there are Li receptions with identical ci and

v?., Because there are now two parameters which can vary

for each source, this implies that in general for
multiple sources the number of groups will ke larger Zfcr

the rate variables than the amplitude variables. I

: 2 2
define cl. and Vj

J
receiver pair. Considering the most general case and

to be ci and v? for the jth source

using Equation (1.12) I find the characteristic function

N NL
M o,x @) = 331(2_11') ? () 1 1r (1.86)
N 1j (w-1[7-7—+ 2313 ] 21y 72
Taking the inverse transform
[--B--] i .
1 N VLj eimxe °dedg
(X X) 4'7‘ j’l (—2'? ) 1 2 7 2 A (1-87)
N 9 (wmilzrt 20} vio? D)
735

-

Unfortunately, I have been unable to evaluate this integral;

thus a retreat for the meoment frcm the mest general case
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is in order. Much more progress can be macde in solving
for the density of % because here we are dealing with a
sum of independent random variables, and it is not
required that we know the joint density. This analysis
will ultimately lead to a very simple and useful
approximation of the density for ¥ under the most

general case. Upon completion of this analysis I will
return to the problem of the joint densities anéd the pdi's

of 3 and A.

1.2.2.2.1 Solutions for pk(i)

First I will consider the exact solution when the

preduct civ is different for each source/receiver zair,
Case (b).. I apply Egquatiocn (1.63) for L= 2:
by, =-bylxl by, =-b,li
P, () =—ofe T oxZe 2 (1.88)
A2D 2

where bi = l/Zaiivi; and the * denotes convoluticn.

Performing the convolution
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Rewriting Equation (1.89) in a slightly different way,

. by by =bBylxl bl |by =Bylxl
P).( (x) = ST -~ 17 (1.90)
2D bz-b:L b2-bl
. by =bylx| s
Now P, (%) =P, (%) * - e . Examination of
X3D X2p

Equations (1.88 - 1.90) reveals that successive

convolutions can be done by inspection:

r [ ] A
b3 b,b ~b, | x| ~b, | X
oo 02 1 P31B3 1Ixl 3 _
Pgqn X 12 E’se b,e

\ 3 1 ' )

b? b,b -b, | x| -b, %
- = 1 ~ 12. 22 32 l}Be 2 - bze 3 r (1L.91)
bs-b bs=-b
2 1 3 1l J

Rewriting this result so that the method of inspection can

"be applied again,

2.2
b2b3 b

)
X3p (b - b}) (b3 - b})




b2b?

- 173 2 ¢
(b3 - b2) (b} ~b3) | 2
b2b2 b, =-b.lx|
+ 12 —23- e 3 - (1.92)
(b3 - b}) (b3 - b3) J
and thus,
21212 - .
B, (%) = 22034 {b—l R
X4p (b3 - b2) (b3 - b2) (b3 ~ b3) 2
212102 ( - .
} b1b3by 42§ B2 lxl
(b2 = b2) (b2 - b%) (b% ~ b3)
27 P17/ Y037 R0 g T Byl |
( 3
2102102 - .
. bibibs - |bj . b3|X|r
(b§- bi) (b§- b;) (bg-b_g) J
b2b3b2 rb -b I'I’
_ 1°2°3 4 TRRS 1.93
(b2 - b?) (b2 - b2) (BZ-bd) |2 r (1-93)
TS L St L Sl LI | )
etc..'.

Thus it can be seen that Pi (¥) is a weighted sum of
D

the individual single source pdf's of ¥. It is also

e ilid




evident from the L= 2-4 cases that in general

L
I b? .
L -1 3 -b. | x|
P, (X)) =3 ] p ik e *
Xtp i=1 °i

L 2 2)
I (bs=-Db
m=1 m i
mFEL

or more simply in terms of cii and v,

1 L ciivi .
P, () = ) T exp |- —in——
LD i=1 b2 g% 2 207, V.
mgl(clivi clmvm) 1i7i
mEi
Solving for the moments,
(
0 i k odd
-k L
E[XLD) = { I bz
k! % 1 =1 ] 1 k even
101 S; L p k+1
L T (b2 - b} i
m=]
myi

Making use of the properties of sums of independent

-97=

(1.94)

(1.95)

(1.96)
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random variables,

L
g2 =8 gt .v2 (1.97)
xLD izl 1i71

IS st clli il o b ine e

Equation (1.96) with k=2 confirms this result.
4 | An exact solution for PiN(i) for the most general
-8 case considered in the beginning of this section would be
an N-fold convolution of Equation (1.67) or (1.76) with

"itself. An exact solution for N=2 will now be presented. ?a

L, (L, +k=2) ! L,-k+1
P (%) = ——t—e 2 BT by
2X (L, - 1)12 1 k=1 (k=1) 1 (L, = k) 12
L2 (L,+m=2) ! L.-m+1
. 1 2 : p 2

(Ly= 11282 mel (m=1)!(Ly-m) 2% % 2

-b, |yl =b,|%-¥|
[l

L,-k
vl (x-yl % dy (1.98)

I will now evaluate the integral. I consider (>0

(we know the result for ¥ <0 must be identical), y> 0, and
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then y < 0:

For ¥>0 and y> 0,

let vy = %t
®  Lo+L,=k-m+l ;> =b;%t =b,%|l-t]| L,-k L,-m
f = X 172 f e 1" ¢ 2 £ 1 [1-t] 27 4t
Q 0
e .« +(1.99)

To remove the absolute values this integral must be further

subdivided for t< 1, and t> 1:

® L +DL,-k-m#l | =b,% (! ~=(b, =b,)kt L.=k L.-m
Iag(lz ezje L7207 ¢l Taee) 2 ae
0 0
. bok T =(by+b,)kt L,~k L,-m
‘e 2 f e 1T 27 ¢l V1) 2 ae (1.100)
1

The first integral in Equation (1.100) is the confluent

hypergeometric function encountered in Section 1.2.1l.1.

v - Y T W B e ARG - TR

PV - T AP B ETS O s

25 .
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The second integral is a degenerate hypergeometric
function known as Whittaker's function [18,24]. Performing
a similar analysis for y< 0 also yields Whittaker's
function. Simplifying to as much an extent as possible,

I obtain for the final result:

L L

§ 1 @+6=
1 B2 (L) 1L e2) 15505 | 0T

| . 1
‘ P.(Y) = =
i 2X TLOT(L) 212 kel mel (k1) 1(Ly=k) t(@-1) ! (L,mm) 12

k+m=2

a+4

+ expl- 3 (b, -5 %111, +b) |1 2 (o

- T

LA o i

Hgeg 1oamg [ +0DIKIT + CD*H empl- § (- [K1)
2 2

o+ )

T@)w, ._1[(b1+b2){)'(i]J (1.101)

ORI NI I

2 2
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where,

G-Ll-k+1 1

M(a,8,2) is the confluent hypergeometric function,

and W u(z) is Whittaker's function.
r

v
1
E' In order to check Equation (1.101), if I let B
' Ll = L2 = 1, then I should obtain Equation (1.89). For ;#
L, =L, =1 . :
B
.. _ bibylxl : .
P (%) = === {exp(~b,|%)M[1,2, (by-by)|x[]

2

]-l

+ axpl- § (b= by) [X[11(by+by) |17 Wy _, [(by +by%]]

+ expl- § (by-by) [%]1 0y +by) [X[17F Wy, [(by +by) [%]1

e « o(l.101a)




I now make use of the following identities [18,24]:

a2
M(1,2,2z) = = sinh z ,
W a2 =W, 02
z
wo’x(z) = /Z/7 KA(T , and
Kz(w) = /T/3z e ¥

where Kv(z) is the modified Bessel function of order v.

I obtain
N
Wo'_%(z) = Wo'%(z) = exp(- 3)

and applying these results to Equation (l.10la):

PP . ,
U [exp(~by |x|) - exp(-b,|{%[)]

+ ‘T}? [exp(-by |%|) + exp(-b,|%|)]
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It is easily shown that this result is identical to
quation (1.89). However, though Equation (1.101) may be
exact, it is of significant complexity and thus of
limited engineering value. For arbitrary N it is
therefore clear that PNX(X) is analytically out of hand
at this time. The complexity of the result, however,
once again motivates an approximate solution. Aan
Edgeworth's approximation turns out to be quite simple
and very useful for even the most general case. Recall
the Edgeworth's series is given by Equation (1.42). 1In
the present case, however, because ¥ is symmetric about
the origin, the coefficient of skew, Ygr is identically 0.
Thus it remains only for me to solve for Yer the coeffi-

cient of excess. First I solve for K4, the fourth order

cumulant or semi-invariant Q4] of ¥:
2 2
Ry = E[X"] - 3(E[X*D) (1.102)

Performing the required calculations on Pi(k) given by

Equation (l1.4) I obtain

Ry = 19zo§v“ (1.103)

Recalling Equation (1.4%9) and considering N groups of L

\
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identical sources each, the most general case, I have:
b
K , = 192 2 Ligy;vs (1.104)

3 N i=1

From Equation (1.70) I have for N groups of Li sources,

(1.105)

Applying Equations (1.44), (1.104), and (1.105), I obtain

3 the result
lZlL Gll 1
Tg = 3 - (1.106)
! (le “3° 13V 3

and the Edgeworth's series is then:

g e
% 0

or

g0 = g {z(n) + 3 vezY (n)} (1.107)
X

YR

{
i




v
P (X)) = =2 {1+42- 20+ (1.108)

where n = %¥/0 . and
NX

z(n) = exp (- %— n?)

2
V2w

It is clear from Equation (1.106) that as N becomes large
or the Li become large, PNX(X) approaches a Gaussian.

The maximum value of Yo is 3 for a single source/receiver
pair and for L identical ones Yo 90€s to zero as 1/L. In
Figure 9 I have plotted the exact density for N=1, L=1
given by Eguation (l.4) with its Edgeworth's approximaticn
given by Equation (1.108). This is clearly the worst
case. I have let civ = 1 for convenience. In order to
.gain some understanding of the behavior of Ye for this
case, in Table II I have listed Yo 2nd PX(O) from the
exact density, and its Edgeworth's approximation for
various values of L identical sources. The percent error
is also tabulated. From Figure 9 it is evident that the

error shown in Table II will be the maximum error of the
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i ] | I | [ | ] | l | ] | r i [ | | |
0.25— ]
Exact
0.20% —
Approximagtion
O.15— —
.‘S
-3¢
a
O.I0 —
005 —
000 ] [ | l ] i 1
-8 -6 -4 -2 o) 2 4 6 8
X vo|t52 rad/sec

Fig.9 Comparison of Edgewarth's approximation for X when
N=L=1 given by equ. (1.108) to the exact density for
X given by equ. (1.4). This is the worst case.
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TABLE II

The maximum point by point error of the Edge-
worth's approximation to P, (x) for wvarious
values of L. XLE

Also listed is the value of Yer the coefficient
of excess for each L.

Ty )

| P. (0)
L Ye iz Erior
Edgeworth Exact
1 3.00 .1939 .2500 22
2 1.50 .1184 .1250 5
3 1.00 .0916 .0938 2
4 0.75 .0771 .0781 1
; 5 0.60 .0678 .0684 1
: 6 0.50 .0612 .0615 .5
? 10 0.30 .0463 .0464 .3
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approximation in the main lobe. From the table
convergence to the Edgeworth's is very rapid and it
appears quite reasonable to assume that the Edgeworth's
approximation will be a very good one when Ye 1. 1t is
true that the Gaussian assumption will also be reasonable
for Yo < 1, however, because the correétions required by
Equation (1.108) are trivial, accuracy need not be

sacrificed for expediency.

1.2.2.2.2 Solutions for the Joint pdf's,
2¢(b) and PA(A)

In this section I will first solve the problem of
two different source/receiver pairs, i.e., the ci and v?
are not the same. I will then'generalize the analysis
and solve for N=2 of Case (¢). PFinally, I will indicate
the analysis required for arbitrary N.

For two independent pairs, the joint density of
Xl'il'xz and iz is given by taking the product of

Equation (1.9) with itself with different ci and v?:

1l
P ) e (X s).( » X ’i ) -
Xys¥Xq1XprXy “L2L702272 2.2 2 22—
12A1°72° 42 40102 /Zﬂaxlcllvl /2n4x2012v2
.2 .2
X X Ko
+ exp[- i' - z ] exp(- i' T - ; 2] (1.109)
20y, 29y, 8911V ¥Xp%12V;
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Now, the pdf we are after is the joint density of y and

X where yx = Xp * Xz and y = il + iz. I note that in
Equation (1.109) xl and iz are jointly Gaussian. Because
the density of their sum is given by convolution, the

following can be done by inspection:

) 1
P o (Xy3X0s)X) =
Xy 9Xqs X X17%2
1°4/2° 4g3 c /Zn(»xlcllvl + 4x2 12 2)
X X o2
‘ . exp':- e - :‘ (1.110)
! 20}; 207, 2(4x;07)V] * 4%91,99)

The final result is obtained using the convolution again:

; X

: L) 1

| Xo Xy Ko X) = exp(= —T) = —7
20 20], 7, 403,075 V2RLaX O],V + (k=X )0T,V5]

-]

22
. exp[—x1< S SN z:lldxl (1.111)
2011 2012 8[)(1011\:l + (x-xl)olzvzl

I

I now let Xy = Xt:
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1,
xéexp(-x/Zciz) 1 1
P . GLO = T . —
X:X 2 2 _:._ et
2D 8011012/7F 0 /blzvz + c(allvl CEN)
x(e?, - o)) .2
°exp[—t( lf 211)- — Lz ————dr  (1.112)
201,92 8X9)aVp + 8xtl0];V) = 0y,V))

I have not been able to evaluate the remaining integral in
Equation (1.112), however, as will be demonstrated below,
numerical integration is very simple. Making the

transformation to p space I obtain:

1

ooty = R0 1

P .. (pg,0) =

P,P 2 L2 2 2 2T Ty

D 203,07,7%% o Y912Vy ¥ t(O7;V] - 91,V))
2 2 2
pe(os, = 95;) 2
. m[-:( 12 - 1y _ — ‘32 —— 2}: (1.113)
2011912 2071,Vp * 28(97;V; = 97,Y))

Integrating Equation (1.113) over p I obtain the marginal

density of p for two different sources:
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2 2 1
911%12 L
Pé (é) f'_ 2 2 2
o) - -
20 2t g [ofy + e}, = 01))] '/°12 3 + e@ v - 0V
62
Cew |- —— —— |4 (1.114)
203,v) + 28(03; V] = 97,v))

The integral in Equation (1.114) can be evaluated by
expanding the exponential in its power series and

integrating term by term. After significant labor

I obtain:

|8]02.02, (a2 v2) =
5, (&) - /_}1 12 Y1 1 4_;% 2 T (h )
D (©11V1 = 912¥2) n=0
(o},-02)8* " 2 a2
. E———Ll-———- I(-n - 3, —& ) - T(-a-3, : =)
2011\)l - Zalzv 2011\)1 2012 2

. o «(1.1153)

where I (a,z) is the incomplete gamma function [23,24]. The

appearance of |p| does not mean that Py (0) = 0 because
2D

the limit as 3+ 0 of the incomplete gamma function is

infinite. If the incomplete gamma function is expanded in
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Wr-
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its power series, I get:

(az 02 v3) =
Py (3 --1—1—1-2—-——%%- T (-1)% (D)
2D 2 (011 1-01,v3)  n=0

2 2 n
r- 92 "~ %11 v (- Z é s 2n—2m+1 2n=-2m+l

L o ) 1°12V2 RSS!
Lgll l - c v m=0 m'(m—n--)

e . +(1.116)

In obtaining numerical results from Equation (1.11l6) I
encountered overflow problems in computing successive
terms of the series before an accurate result could be ;
obtained. In order to avoid this problem, Eguaticn (1.116)

should be rewritten as follows:

2 2 2 2
P, (b = °11“12(°11 1~ %12 2)
2 /T i -opp
(c12 c )012 5l @ (41)m g2 ®
cnzi(l)(nﬂ)-——;z ) ' ( -)
a=0 allvl chvZ m=0 m! (m-n--) 2"12 2

L s (I 7 W% CPR
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® (g2, = 02 )02 vi] = o 2 m]
9 -
- cll\’l z (_l)n(wl)[}%% Z (l) - ( f 2)
- - - ] - -
u=0 cllvl clzvz n=0 m! (m~n 2) 2°11”1 J

e o (1.117)

Values for P (d) were computed by numerical integration

b
of Equation (5?114) and from Egquation (1.117). Depending
i upon the value of )5 desired, the numerical integration

! of Equation (l1.114) to three place accuracy was about

. 40 times faster than use of Equation (1.117). The value
for p = 0 is obtained from Equation (1.1l14) analytically

and exactly to aid in these comparisons. Performing the

integration and simplifying as much as possible:

) ===

3 - 3
1 %11 ~ %12V2
Pb (0 o*.v2 - g% v

2D V2n 1 111 1272

2 42 (2 2 o 42 y2 7 _ 2
. 9119124911V T 91599 %127 %

2 _ 42 W2 L e 2 W2 _ a2
(035 = 0302727 (a7,v] = 01,9) [ (07,v5 = 01;v])

| ORI
% g2 2 _ b 2 % g2 2 _ 42 (m2 _ A2 )
.1 n[f'u"lz"l 201V + 935919V = 930915 = 9110295Y, ¥ 91 =93y J

[} 2 2 6 2 b L2 2 2 2 2 — “——\-)-2—._ il
2913%1 ~ 911912V T 11%12%1 T 11Ot "u)z"u"lf—————li 2

912 =

.« .(1.118)




The mean of 5 is zero and the variance of 5 is obtained

by interchanging the order of integration in

Equation (1.114), integrating over § first, then t:

2 2 2,2 2 2 2 L2 o a2 2 2
2 911°12 912¥2  911V1 . 911V1 T 912V2 912

95 = g2 T o1 M- p—— In 33
2D g, - g2 11 12 12 11 11

12 11

e o +(1.119)

Despite the complexity of Equations (1.114) and (1.117)
it appears as though a Gaussian approximation is an

exceptionally good one. For values of cil, vi, oiz, and

vi taken from data, which will be discussed in more

detail in Chapter III, the values of P () from

o
2D
Equations (1.114) and (1.117) deviate from the Gaussian,

-
-

8
2D
the fourth significant figure. A more formal

using the value of ¢ from Equation (1.119), only after
calculation with equivalent results is obtained if the
coefficient of excess, Yer is solved for. I apply the
definition of Ye from Equation (1.44 ), perform the

two integrals required, and obtain Ye for 5 for two

different sources.
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1 ' 6
Y = -5 [30 - 3c \) + 6(0’ )g ] - 3c
e 012 cll 12 2 11°1 ll l 12 2 2D pZD

e « +(1.120)

Applying the values of the parameters used above and

Equation (1.119) in Equation (1.120) I obtain for this

-7

example that Yo = 2.4 x 10 which certainly warrants the

Gaussian assumption! Coupled with the result of

Section 1.2.2.1 in which it is proven that P (p) remains

]
LE
identically Gaussian and independent of the number of
sources, it appears quite reasonable to state that even

for the most general cases, Pb(b) will for all practical

purposes be Gaussian.

Making the transformation A = elny in Equatiorn (1.112),

I obtain
§ , . eiah - o) 1
l PA.I\ (A’A) ® 2 z 2 /‘2"2
L seo}iol, YT ‘g Joppv; ¥ (O V] - 910

: Ne, 2 2
; e (07, = 07.)
. ‘xpl_c[ 12 ~ %11’

A/ E
l 202,02 i 8e202, vZ + 8e?t (02 vZ - 02 v3) .
11712 12 2 11 l 1272~

. o o (1.121)
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Integrating over A I obtain

1 2 .2 2 2 L 42 2 2
. 12[012\)2 + t(cllvl olzvz)] dt
PI.\ a) = 2 .2 1 1 1 2 .2 2 ,,2 2 .2 A%] %%
2D 0 "“11"12{[?{_2' + “c?lz - 0152)”4"12"2 + 4e(oyvy = 91pvy)] "'e’}

« o . (1.122)

Making an enlightened change of variables allows the final

integration to be performed, and

r

) A |2 Zvi -C A%/e? + av}
Py (\) =7y -4¢% v + B + —————— E[1 + ————]
A A 2,3/2 1171 D F
2D (= + 4V%)
e 1 ( J
1
, ] 1
A | C - 2v; Az/ez4-4v§
g? 2

3

« o .(1.123)




'y 3 [
c = 11Vl * %12%2
2 2
912911
g2 v gi_v2 ‘s o v - gt v2
b= awi - li 1 13 2 . vé)%r NSS! i : 1272,
(o} (o} = o4 o}
12 11 _ 11°12

Y P S 1
] |:(°11"1 O12Y3)
3

2 b b g2
9119127 911%12

'
"

2
. L 2_ "‘2
iz 1 (9111 = 932Y))
pA PA A - 4 Ld - P
26T 2 |0§,971,(0]; = 0110 (G1;v] - 91,v3)

Though arithmatically messy obtaining the exact solution
from Equation (1.123) is approximately S50 times faster
than numerical integration of Equation (1.122) which
results in three place accuracy. The mean of A is of

course zero and integrating Equation (1.121) first over

i and then t, I obtain the variance,
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W2 2 _ 4% 2 2 § 42 (2 _ a6 2 \,2
2 -—2e® (T%12%1 7 1% | %12%3%2 T %1%, Y12
A, 2 42 2 _ 42 b ooq2 42 s 0
2D 93;%2 %2 -1 912 7 211%12 * %11 1

b
!
z

? . . .(1.124)

Unlike the single source case, the variance is finite
though the next nonzero moment E[AED] is infinite.

The rule derived for equal source/receiver pairs appears

to apply to unequal ones as well. Namely; E[Agnl exists
only for n even and n < 2L, where L is the number of
sources. An example of PAZD(A) is plotted in Figure 10
using values for cil, vi, ciz, vé taken from data. The
Gaussian using the variance given by Equation (1.124)

is also plotted. The Gaussian assumption is clearly not

warranted in this case, and in fact because densities

for A for all cases are related to the Longuet~Higgins

type density, the Gaussian assumption will be a poor one
in general even when the densities are appropriately
normalized (see Figure 1, Reference [(9]), in which case
the variance of the Gaussian will not be relevant to any
of the source parameters.

I will now generalize the approach used to solve the

two source/receiver case to solve the M =2 case. That is

two groups of pairs, with Li pairs each, with the same

|
!
?




Gaussian

| I | | l :
40 30 .20 10O OO IO 20 .30 40

A dB rad/sec

0.0

Fig. I0 The pdf of A for two different sources, equ. (1.123)
is plotted with the Gaussian using the variance ]
given by equ. (1.124). i
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cii and v; (i=1,2). I start by considering the 3joint
density of XLlE, RLIE' XLZE' and RLZE given by the

product of Equation (1.74) with itself with different L.,

cii and v; (i=1,2), rewriting it slightly to make the

first operation obvious:

o . . (X9, 7. XX 5)
Xy pr¥s Xy wrX 2414242
L E' AL, E' *L,E' "L E
L,=1 L,-1
Xl Xz

- _ Li+Lp , 2==2 = 2——2~ AZLl 2L2
(Ll l)l(L2 1)12 “V2maxX,071V] /2L4X2012,2 9117915

:; « .2 -

- X X %2 %2

. . exp[} i - f - — 12 - — 22 } (1.125)
2077 291, 807pviXy  803,v5X

B o . o el

As before, I seek the joint density of x, and ¥ where

X = X + X , and { = ¥ + X . A double convolution
LlE LZE LlE LZE
will yield the desired density and because ¥ and ¥
LlE Lzﬁ
are jointly Gaussian as before the first convolution

can be done by inspection:




P P (XX pX)

Ll“l Lz‘l
X1 X2
Ll+L 2L1 2L2 2 =2 2 -
2011 12 /2n(4xlcllvl + 4x2012v§)

r(Ly)r(,)2

1 X X 2 N
‘ ) explj— i‘ - 3 - 2 zx 2 zJ
Zdll 2c12 2(4xlcllvl + 4x2012v2)

bl i

Setting up the final convolution after making a change of

variables leaves the following result:

L1+L2-3
X exp (- -J%—)
)2 s (X, X) =
XX L1+L2+l . 2Ll 2L2
2 I (Ly)T(L,)2 V2T o1t 915
1 L.~-1 L.-1
t . £t (1-t) 2
27.27
' o YO1V) * E(911V] = 015v3)
1
1 x(og?, =02 c2 T
-exp[—t( lf ll) - 2 A — 'dt
201,91, 8x01,V5 *+ BXE(9 V] = Gi,v3)]

« o .(1.126)

.
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This is a key result and is essentially the solution
of the entire N=2 problem because this joint pdf
contains all the information required for the solution
for the pdf's of x, o, A, X, 8, A. as a guick check,
if I integrate Equation (1.126) over ¥ (which can be
done by inspection), I obtain Equation (1.20) and hence

all the amplitude densities for N=2 follow directly.

Integrating over x in Egquation (1.126),

M
P .(%) = (%]

X M=3 2L1 2L g(H+1)/2

2 F(Ly)T(L,)2 /T o ol1r 915 8
3 . L,-1 L. -1
| 'J R
: M+ /2 T /2
1 1 [9]v3 + €07 V] = 07,3} (rgrm* t g = 5701
k. 12 11 12
iH
; 2 2 2 1
) . o4 + t(o -9 ) -]
; Ry, lél [ 11 12 vzjlzrdt

1293193 + €(07;91,V1 = 91591;

o o"o cZ \)2 - 0'2 \)f_
i J

e o o (1.127)

] 1
i where M = L1+L2 5-

The remaining integral is clearly not a straight-

R
!
d
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forward one, however, we have already solved for

P i(i) in the previous section given by Equation (1.101)
aid its complexity has been noted. Clearly the ¥
densities were handled by much more efficient means in
the previous section. If I transform Eguation (1.126)
into ¢,% and A,A space, than I can obtain expressions for

2
have been unattainable until now.

the densities P é(6) and P A(A) and their moments which
2

2L, +2L -l
o ! exp (- E%r)
P ‘(p’b) =

P,0 Li+Ly-1 2L 2L,
2 r(L,)r,)2 V2T o 111°12

1 L.-1 L,-1

) I tr Q-e) @
&
0 YO1,V5 + t(0]V] - 97,V))

2 2 2 -
pé(os, -0s,) .2
. exp -:( 12-°11 ] _ 3 dr
202 ¢ + 2t(c? v3)

11 12 12 2 11V l 12 2

. « +(1.128)

Integrating over ¢ I cobtain:
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(@, +L, - 1)1 o2k
1 2 11 12
P b(D) = =
2 T(LT(L,) /27
1 L.-1 L,-1
. et 1-t) 2
T2 Y S Y ) 2 2 _ 42 L1+L2
0 ¥O15Vy + £(973V) = T35V9) 03y * £(93, - 03]
52
* exp|- —— — _— dt (1.129)
2012\)2 + Zt(cuvl - clzvz)
g
3 As a check, if I let L1=L2=l I obtain Equation (1.114)
% as expected. Numerical integration of Equation (1.129) is
: not difficult. Solving for the variance, I obtain
3
1 2L, 2L L.-1 L,~1
A 2 41, M1 2 2,2 202 .2 2yq2
-‘ cz - 3(L1+L2" 1) !oll 012 J t (l-t) [012\)2 + t(Ull\)l - 0'12\)2)] dc
: ol 2 2 _ .2 yqL1tL2
i 2 2/2 T(LT(L,) 0 (o, + t(o], - 93]
]

#
)
B

«.(1.130)
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To obtain the final rate density for this case, I

transform to log variables:

A eA/e
exp(= (L, +L,+%) - 5]
€ 172 20
PA A(A’I‘) 2 Ly+Ly-1 1221.1 2Ly
2 e’T (L, (L,)2 V21 a1t 51,
- , L.-1 L,-1
] . J ¢ 1 (1-t) 2
’ - & 4 & - - -
, 0 YO15Vy * £0013V] = O15Y7)
3 Me, 2 2
k e (07, = 93,) r2 A=
e -t[ 2122 11] - 242 ,,2 AZ : 2,2 2 4,2 de
| 2011012 SeAclzvz + 8¢ c(cllv1 - °12V2)

« « «(1.131)

and integrating once more over A, I obtain the desired

résult:
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. T(L, + L, + ) 1 Limt Lyl
er(Ll)F(Lz)Z 2r 91 012 0 /hiz HE c(cll 1° 912
(62,52 )) . "‘2’%
R — — d
2012 2011012 8e? °12v2 + 8¢ t(cll 1- 612”2)
e « 2(1.132)

2 Equations (1.131) and (1.132) reduce to Equations (1.121)

and (1.122) for L1=L2

of Az is not straightforward and cannot be performed

=1, The integral for the variance

unless L1 and L2 are known. This completes the analysis

for the rate densities for Case (c) when N= 2,

' The solutions for arbitrary N are very complicated.

Fortunately, an Edgeworth's series approximation has been
derived for P k(k) (Equation 1.108) and it has been shown

that P o(b) w111 be accurately approximated by a Gaussian. §

Unfcrtunately, P (A) cannot be successfully approximated
N
by either an Edgeworth's series or the Gaussian. The

coefficients of skew and excess cannot be found for A

for arbitrary N, thus ruling out the Edgeworth's series,

and though one can certainly fit a Gaussian to A, as




- b i LA 3

" p———r v

e - e e A 3 » (At b i e s 00 G

=127~

noted earlier, the fit will not be good, and the variance
obtained from the Gaussian will not be relevant to any
physical parameters of the problem. For realizations

with N> 2 in which P A(A) is needed, and/or approximations
for PNb(b) or PN*(X)Nare not good enough, the following
procedure can be used for arbitrary N provided computer
time is available.

For arbitrary N, following the approach used for

N=2, I can write:

P (Xbil"..’xNxN)

Xr pX eee Xp wX
L, EfL, E, ) "L E{ L E

L -1
N xnn
I —

- Ln 27T2™ 2L
n=1 F(Ln)Z X910 %1n®

X X2
. exp [} ? - — “z ;] (1.133)
chn aclnvnx

!

As before, the sum of the in's involves the convolution of

RN 2 e BT T N ot e T B Tt T

PP




Gaussians which can ke done by inspection and

P (xL E:"'leNEK) =

X1, En""xLNEX

$2
1 exp {} S X_
/8T L VY g . .02

2
oy °11M1 ik X3913V%
L -1
N Xnn Xn
e I —_—__Tr_iir'exP -
n=1 T (L )2 nal n 2ci

taken without considering a specific N. Thus,

with respect to the Xn'S to obtain P (XrX) o

NXr X

transformation yields the exact density for bN
respectively. Perhaps an easier route to P x
N ’
can be taken by numerically performing the two

integrations required by Equation (1.87).

Unfortunately, this is as far as the analysis can be

the

procedure would be to numerically compute N convolutions
Then one
" more integration over x yields the exact density for

iN; likewise, integration over p and A after simple

and AN

X(X'X)
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In summary, the solutions for the rate densities
for Case (c) with N> 2 are of sufficient analytical’
complexity that approximate methods or numerical
techniques must be employed. The densities for even the
most complicated realizations of Case (c) for p and ¥
are well in hand with the Gaussian and Edgeworth's
series approximations respectively. For A, however,
complicated multiple source configurations must be

handled numerically.

1.2.3 Coherent Socurce Addition

In this section of the thesis, I investigate the
statistics of the received signal when two or more sources
are radiating at the same frequency or so near in frequency
that the receiver is unable to resolve them. The
application of this analysis is therefore dependent upon
parameters of the receiver; i.e., its resolution R, which {
is a function of its averaging time T (R ? 1/T), and
the source bandwidths, specifically R> Af, And R>'Bi,vi,
where A£ is the frequency separation, if any, of the
sources and Bi is the source bandwidth of the ith source. 1
With these conditions, the procedures used in previcus

sections are not applicable, and coherent addition

of the signals must be considered. This analysis will
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model random, narrowband, sea noise from biologics,
weather, distant shipping, etc. that overlap in frequency
in a small band of interest.

The multipath signal, p(t), under the assumptions
of phase random propagation can be written for a single

source as

N
p(t) = r ] cos(uwt + 8,) (1.135)
n=1

where r is the single path amplitude, N is the number
of paths, and en is the single path phase, which is
distributed uniformly between 0 and 27. For many

sources at or very near in frequency as indicated

above,
et
p(t) = r cos(uwt + 8_) (1.136)
i=1 1 pa a

where Lc is the number of coherent sources. If this

analysis is applied to random sea noise, then

Equations (1.135) and (1.136) imply that each radiator
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is CW with essentially constant mean output levels. This
is perhaps not too bad an assumption if integration

times and record lengths are not very long. It is
assumed that Niz_4, V.o such that phase random propagation
is obtained for each source. Thus, Equation (1.136)
reveals that the problem is one of solving for the
statistics of a random vector which is the sum of L.
random vectors, each with Rayleigh distributed magnitudes
with different means, and uniformly distributed phases.
Forming the envelope of Equation (1.135), I obtain the
guadrature components for one source, and applying
Eqration (1.136), I obtain for the quadrature components

of the total vector:

L
C

X = pcos¢ = ) p_cos?
n=1 O n

and (1.137)

Lo

Y = psing = |} p_sin¢
n=1 n n

where p is the rms amplitude of the total vector, : is the
total multipath phase, °n iz the rms amplitude of the nth

source, and a“ the multipath phase of the nth source.
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The quadrature components for the single source ars
Gaussian (8,9], thus from Eqn (1.137) it is clear that X

and Y are Gaussian as well:

px(x) = —-1—_ exp {- 2—X--.---}

VITG ? °1
(1.138)
PY(Y) = PX(Y)
2 Lc 2
where c: = L © ' and
I n=l in
y )
. 3 l xz
P,(X) = exp | -
X /2wc§I { UIIJ
(1.139)
PY(Y) = PX(Y)
L
2 zc 2 2
where o] = o v
I n=] I n
Note that the short hand notation for Y and ¥ is meant to
show that the form of the densities is identical. The
quadrature components are in fact independent. Egns (1.138) l
and (1.139) illustrate that no conditions need be placed on
the strengths of the sources or relative values of the

V2 's. At this point, however, I should caution that if

one or two sources are propagating energy via 3 or fewer
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paths, and they are strong relative to the other scurces,
dominant path affects must be considered. Please refer
to Appendix C, and for dominant paths plus diffuse
(Rayleigh) noise see Reference [26].

Continuing from Equations (1.138) and (1.139), the
analysis is straightforward. The resulting densities are
in fact identical in form to the densities for the single
narrowband source as given in Appendix A. The functional

difference is that wherever o2 and v? appear in Equations
q

I
(Al-A8) they must be replaced by ci and ciI/ci respectively,
e.g., \
P (p) = 5 exp|- iﬁ; o >0
1 91 ZGI
c
vyam 2 - 2 b
AOL - GI R GpL = 61(2-.5) (1.140)
c c
. c./C .
1 I’ "I
P;: (A = = s b A <
e ey A
II
* = 3 = o
c c

The most important difference, however, is that now the

2
1n

single source they do not. It should be noted, however,

densities for A and é depend upon the ¢¢_'s while for a

that if v? is the same for all the source/receiver pairs,
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,
then once again

-
I

.
L mvm {emd Aamb ~Af Ltha meme?dioda
and 3 are independent of the amplitude

parameters, cin's, and are in fact equivalent to the

densities of A and & for a single source. Even though all
the sources are at the same or near in frequency the
likelihood that v? is the same or almost the same may not
be a good cne given v2's range dependence [ll] (when the
internal wave model applies, see Section 3.2).

I now consider a narrowband experiment in which random,
background sea noise is present. From the analysis above,

I can write:

L
2 2+ f: ol
ct =0 <
I 1 n=1 1n
and (1.142)
L
2 2,,2 "c 2 2
UII = clv + ) glnvn
n=1

where Lc is now the number of noise sources in the analysis

2

band and o3 and v? are the signal parameters, and the ¢?

in
and v; are the noise related parameters. I now make the

assﬁhption (perhaps bad) that v? is a constant for the

2

Ivz, anéd I define

signal and the noise. Thus, o2

=0
Le II
<

g

§ = a5 oin, which is one half the sta mean square noise,
o
and therefore:
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2 o .2 2
9 T 91 * %
o
(1.143)
2 2,2 2,2
orp = O1vV° t oy v
o)
or
2 _ 2 1
o1 o] ggg + V)
(1.144)
ol o2y (zk= + 1)
I~ "1 SNR )
91 1 i ignal
= - long time average mean square signa
where SNR = c§ long time average mean sguare nolse
o]

Applying Equations (l1.144) to the densities and statistics,
e.g., Egns. (1.140) and (1.14l1), the effect of background noise
can be accounted for. It is clear that SNR will ke a function of
the analysis bandwidth, and that noise levels should be
measured in the absence of the signal. By narrowband I mean
the signal bandwidth B should be <<2v which in turn shculéd be
<< 1/T where T is the 6bservation time and the analysis band-
width BA should not be so large that the frequency dependence
of v? would cause v? to vary significantly across the band.

If for other reasons, i.e., range dependence, the

v; # v?, then

2 = L
7y =9 g * 1
but (1.145)
2 L 2.2 1
°1r = 91V GEgrr t Y
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L
c
[ 2.,2 2 2
where SNR' = aiv?/ ] oinVa -
n=1

Finally, if one is analyzing over a wide band and the
components are disjoint but each is a sum of one or more
sources at that frequency, then all the results of the
frequency disjoint analysis can be applied with ci replaced
by c% and v? replaced by o;{ci where these parameters are
defined as given in Eguations (1.138) and (1.139).

For noise which is continuous over the analysis band,
the statistics will be a function of the total bandwidth ¥
and the receiver resolution. All the analysis of coherent
and incoherent (or more correctly, frequency disjoint and
independent) sources apply except now the number of groups

N is given by BA/R where B, is the analysis bandwidth and

A
R is the receiver resolution. Because the sources within

; and‘ciI must be found for each

group using Equations (1.138) and (1.139). The groups can

each group are coherent ¢

now be considered for purposes of applying the results of
Sections 1.2.1 and 1.2.2 as individual source/receiver pairs,
with the ai's given by the c%'s and v?'s given by the
G;I/ci's. In conclusion, therefore, the statistics of the
received signal are a function of receiver parameters as

well as source parameters. For large observation or analysis

time T, and consequently higher receiver resolution, the

analysis of Sections 1.2.1 and 1.2.2 will most probably apply.

R
ey —— —— —— - - W~ 4 = v
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As T becomes smaller, however, coherent effects must be
considered as developed in this section. Careful regard for
the inequalities stated in the beginning of this section
must be applied, case by case, to the data set of interest
and the receiver characteristics, in determining which

analysis applies.

l.2.4 Crossing Rate Statistics

In previous sections I have solved for the join;
densities of amplitude, and amplitude rate for many multiple
source cases. This
allows me, therefore, to solve for the theoretical
amplitude crossing rates for these cases as well.

Following Rice [10] and Dyer and Shepard (15], the

mean crossing rate for the sta rms pressure o can be

defined as

G(po) = J loIPp’é(DO,b)dé (1.146)
- Q0
where o is the axis crossing level. For L equal
source/receiver pairs, Equation (1.78) is used in

Equation (1.146) and I obtain:

2
2L-1

vog~ Texp(- ~§%)
G olp ) = —— 21 (1.147)
LE'ro 2L (3/2)F(L)cif l/? 1

- A} . ’ T I

IE P
= A ey o O

Tz e
. Ropk_stes s -4
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Equation (9) of Reference [15] is obtained for L=1.
(Note that n = ci, My Z civz.) For two different
sources/receptions Equation (1.146) is applied to
Equation (1.113):
p2
0% exp(~ s=9—) 1
o 2012 %
Gan(p ) = (o +8t) ° exp(-ct)dt (1.148)
2D "o g% o2, VI7
11712 0

-2 .2
where a = clzvz ’

§ = oilvi - cizvé , and

1 1
c = p%( - —)
o) Zcil 2012

‘'If I make the change of variables Z = a + 8§t the integral in

Equation (1.148) can be evaluated:

g2.u2 = g2_y2

- 2% 2 .2 y2/ 02 o y2.
(011Y1 = 912Y2) ["c["lz“z/“u Va1 H
11V1 12V2 2
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2 2 2
oyl2 P o2 %127
Y12 » 757,757, ST vT - cH

[ ]

(1.149)

11 %12 Y111 2V

|NN I

where y(v,u) is the incomplete gamma function [23,24].
Finally, for Case (c) N=2 I apply Equation (1.146) to
Equation (1.128) and
2L]+2L3~1 05
1+2L2- - o
Po exp ( EE{;)

Li+L2-2 2Ly _2L2
P(Ll)P(Lz)Z /2 911" 912

Gz(po) =

L,-1 L,-1 "
j t (1-t) (a +6t)? exp(~-ct)dt (1.150)

where o, 8, and ¢ are the same as above.

Integrating I obtain [24]:

2

2L3+2Ly-1 - Po
Po exp (= 3577
12
%21%0) " T, vr,) P2 /g GPEL gLl
1 2 11 12

! 911v1 Pe, 1 1
« ¢, (Ly, =5, Ly +L; 1= =g=—3, —=2(=5—==7—]
1*71 2’ 71 2 01292' 2 ci, O3y

.(1.151)
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where I'(x) is the gamma function [24], and ¢l(a,6,v;x,y) is

a degenerate hypergeometric series in two variables [24].
For coherent sources, phase crossing rates as well

as amplitude crossing rates can be found. As with

amplitude, for the multipath phase [10,15]

G(s,) = f [01Ry 5 (05,8)d (1.152)

Following Dyer and Shepard [15] but allowing for the

effect of many sources at the same frequency, it is easily

shown that
°r 05 -

GLc(po) = v2/m 7;{-90 exp (- 56%) (1.153)
and

Gy, (85 =§§1 = (1.154)
Thus,

G(p ) 5 Po 02 ,

§T3;T = (8m) 3; exp (- 75%) (1.155)
where ci and C;I are given below Egquations (1.138) and

(1.139) respectively. Allowing for the normalization




~141-

employed in Reference [15], and the parameters GI and UII'
-the form of Equations (1.153 -~ 1.155) are identical to
Equations (9) and (10) in Reference [15]. It is also
noteworthy that Equation (1.153) remains

unchanged whether the v?'s for all the coherent sources

are the same or not. In terms of the SNR then

2

G(p) o] p
| o . (gmf (SNR %0 o.opo SNR
E s = 07 (TEema el o (TRl (.156)

I now consider the ratio of Equation (1.155) with

Equation (10) of Reference [15] (the limit of Equation 1.156

as SNR =+ =),

2
| - _SNR Po 1
:- R 1 + SNR exP[iZci (]_+ SNR{] (1.157)

Thus the effect of noise on the ratio of amplitude
1 crossing rates to phase crossing rates is a multiplicative
fi factor given by Equation (1.157) which depends on both the
SNR and the axis crossing level selected.

Finally, if one desires the crossing rates for the

mean sguare pressure X or the level in decibels A, the

4 1
] simple substitutions o = xZ

is all that is required.

, and 0 = exp(Ao/ZS), respectively




1.2.5 Summary of Results

Because of the many cases, the notational difficulties,
the complexity of the equations, and the plethora of
random variables involved, I will attempt a summary in
the form of a table of the multiple source section to aid
the reader in gaining a little perspective on what exactly
has been accomplished. In Table III, I have compiled
the overall results of the analysis for the various pdf's
of interest in the multicomponent and single source cases.
On the left is the breakdown into cases based on source
structure and signal analysis. Across the top are the
random variables whose pdf's we seek. When a number
appears alone in a box, it indicates the equation number
of the pdf and also that the result is unique to this
thesis. Superscripts (circled numbers) appear in boxes
for comments below, and numbers in brackets refer the
reader to those references in which the equation appeared

! previous to this work.

1.3 Finite Bandwidth and/or Modulated Source

In many actual oceanic situations the source does not

aadus o

‘$ exhibit stability in frequency but in fact oscillates or

wobbles about a center frequency which can ke characterized

by either frequency or phase modulation. The effect of
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this modulation con the family of single source densities

is analyzed. Even "narrowband" signals have finite though

small bandwidths. I have determined a criterion for

smallness, as well as the bandwidth effect when this
criterion is not met. Furthermore, the analysis presented
in this section reveals a method by which finite
bandwidths and/or source induced modulation can be

determined £from the received signal.

1.3.1 Amplitude and Amplitude Rate Densities

In the absence of mcdulation we can write the multi-
path signal, p(t), under the assumptions of the phase
random model as given by Equation (1.135). When the

source is frequency or phase modulated, we can write

plt) as
N
; p(t) = r ] coslwt - M(t) - 8_] (1.158)
f n=l n

1 where M(t) is a function of time which may be random that
represents the médulation. As indicated in Eguation
(1.158), it is assumed that source induced modulation

‘ will be path independent which implies that any change in

ﬂ signal propagation characteristics (i.e., path structure,

or volumetric absorbtion) will be independent of the
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"instantaneous" carrier. This is apt to be so unless the
modulation is extreme. This assumption also applies to
the finite bandwidth effect. The bandwidth cannot be so
large that different propagation characteristics obtain
for the extremities of the signal. Further, it is
assumed that none of the energy in the signal is rejected
because the "instantaneous” carrier is outside the
bandwidth of the receiver. Likewise, for a finite
bandwidth source, it is assumed that the entire signal
bandwidth is within the bandwidth of the receiver. Ncte
that depending upon the specific temporal dependence of
M(t) the modulation would be classified as either frequency
modulation or phase modulation. This distincticen,
however, does not alter the analysis to follow.

I perform gquadrature demodulation on p(t) arnd cbtain
the gquadrature components:

N
X = pcos[M(t) + ¢] = r | cos(M(t) + 6 ]
n=]
(1.159)
N
Y = psin[M(t) + ¢1 = r | sin[M(t) + 6_]
n=1 n

where o and % are the amplitude and phase respectively of

the complex envelore, or alternatively in the terminology

of phase random acoustic propagation the sta rms pressure
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and multipath phase. Taking the derivatives with respect

to time,
N .
X = -r ] [M(t) + 3 _)sin(M(t) + 8_]

(1.160)

L] N .
Y = J] [M(t) + 3_]Jcos[M(t) + 8]
n=1 a n

i In terms of the gquadrature compornents, Equations (1.139)

| and their derivatives, Equations (1.160), I can.write:
5 = (Xt + y2)*t
(1.161)

2= (XX + YY) (X? + 277

As given in Section 1.1, ¥, X, &, and A can be expressed

in terms of ¢ and 5. By applying Eguations (l1.1Z3) and
(1.160) to Equations (1.161) and making use of
trigonometric identities, it is easily proven that
Equations (l1.161) are independent of M(t) and, in fact,
are equal to the result obtained when M(t) =M(t) = 0.
Thus, the amplitude, and amplitude rate variables are in
fact independent of the modulation. It also follows,
therefore, that the joint densities ¢f amplitude and

amplitude rate are inderzendent of the modulation.




5
t
,‘

1.3.2 Multizath Phase Rate Densities

For the multipath phase rate, the mocdulation plays a
critical role. From Equations (1.159) it is clear that

the multipath phase with modulation, Oays is given by:

= 1Y _
¢y = tan T = = M(t) + ¢ (1.162)
and, therefore:
by = M(E) + D (1.163)

This result can also be obtained from the single path
variables alone ([the extreme.right-hand side of

Equations (1.159)] from which,

N N
. r2 . .
¢M = X5y {nzlcos M(t) + en]nzl M(t) + enJCOSSn

N N

+ ] sin[th)-+en] ) [M(t)-fen]sinen} (1.164)
n=1 n=1

Again, using trigonometric identities, I find that

Equation (1.164) is equivalent to Eguation (1.163), in

which ¢ is given by Equation (1.164) with M(%) = M(t) = 0.

is -

Note that £from Equations (1.139), Egquation (1.164)
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inéependent of r.

M(t) can be either a kncwn deterministic function of
time or a random process governed by a pdf Pﬁ(ﬁ). In
the latter case, because M(t) is independent of ocean
parameters, Equation (1.163) reveals that 5M is the sum

of two independent random variables. Therefore [14],

. - o : * - . l. -
P¢M(¢) PM(W) P¢(¢) {(1.165)
where * denotes convolution. The mean u¢ = Uy and as
M
with an unmcdulated source, the variance 0% = =.
M
If M(t) is a known deterministic function of time,
I define:
Tg
. 1 1/2v . .
H: (3) = & J = v — &t (l1.156)
o T T ) e BN
0

where Ts is the length of the time series (not to be
confused with T, the averaging time of the receiver).
Hén(é) is a continuocus histogram and has all the proper:ties
of‘a pdf, i.e., it is always positive and integrates to
one. This function or pseudo pdf can be employed when

ﬁ(t) is deterministic but not periodic for a given ensemble

cf time series. Egquation (1.166) also applies for

periodic deterministic M(t). EHcwever, for periodic




deterministic ﬁ(t) in which there is exactly one or n

integral number of periods M(t) can be randomized, treated
as if it were a random variable, and its pdf found
enabling use of Equation (1.165). If there are many
periods in the record, then an integral number is not
reguired; however, some error will be introduced. As will
be demonstrated by examples below and in Section 1.3.3
for periodic modulation functions, Equatiors (1.165) and
(1.166) yield identical results. For many interesting
problems in the ocean, M(t) may be deterministic but
unknown, the real (nonrandom) parameter estimation
problem [25]. 1In these situations one will obtain
experimental realizations of HéM(é) from which one is
able to learn characteristics of M(t), as will be
démonstrated in Chapter 3. Also, as will be shown in the
figures, some deterministic modulation functions will have
easily recognizable histograms, HéM(é), and in fact
knowledge of HéM(é) is by itself a valuable piece of
information to have.

I -shall now consider three analytical examples
illustrating the effect first of sinusocidal phase

modulation, second of uniform fregquency modulation, and

third of Gaussian £f£requency modulaticn on the pdf for 5.

For sinusoidal phase modulation,

st e pmme

Y TN
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M(t) = 2sin(gt + os)

and thus, (1.167)
ﬁ(t) = Bocos (ot + ¢.)

I have randomized the phase with o (uniformly distributed
between 0 and 27), which indicates uncertainty in initial

conditions. I obtain the pdf for M(t) [3],

1

(g2g% - n2)L/2 "’ m| < 8o (1.168)

-1
PoM) = T

Combining Eguations (1.168) and (A8) in Equation (1.165),

I £find

go

2
_ Py (%) = 3= J S S— — (1.169)
- M _BU/TUZ ¥ (x-y)2) (B0 =¥¢2)

An analytical expression has not been found for this
integral; however, numerical integration is straightforward.
Applying Eguation (1.166) with 'I‘s = 2mn/¢ (n is any

integer) and M(t) as given by Eguation (1.167) with ¢s=()

(doen't forget to exploit the symmetry of the cosine)
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vields Egquation (1.169) as well. When x=0 in

Equation (1.169), the integral can be evaluated:

Py (0) = ——=—— L A (1.170)
M T/ViF B2g? /2, /V¥F B0l

where E[n/2, k] is the complete elliptic integral of the
second kind.

It is possible to make some progress in solving for
P: (x) if I make use of the convolution property of

*u
»
Fourier transforms or characteristic functions. For

independent random variables ([14],
3 MéM(w) = Mﬁ(w)Mé(u) (1.171)

where Mx(m) is the Fourier transform or characteristic
| function of the pdf of random variable x [14]. M&(w) is
given in the Appendix under Equation (A8), and for the

sinusoidal density Equation (1.168) ([24],

Mﬁ(u) = Jo(wﬁc)

where Jo(z) is the Bessel's function of zeroth order.




Thus, by exploiting symmetry and taking the inverse

transform of Equation (1.171),

PéM(x) = % f WK, (wv) T (wBo)cos wx dx (1.172)
0

where Kl(z) is the modified Bessel function of order one.

Expanding the cosine and integrating term by term [24],

2n

’ 2.2
p22f3 2l g, - 80 (1.173)

where (2n-1)!! = 1¢35 ... (2n=-1); (-1)!! 1, and
F(a,b;c;z) is Gauss's hypergeometric series (24].
Unfortunately, Egquation (1.173) converges only for

Bo<v and x<v. When 80=v,

i
1
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d - n 2n 2
P, ) = /77 = ] == (& a1 1]
M V on=0 2%(2n): VY
1 1
. - (1.174)
n,l l n n,3 n_ 1
r(-2-+z)r('4-'§‘) I'(7+3-)I'(--2--Z-)

As with Equation (1.173), Equation (l1.174) converges only
for x<v. Pé(&) is plotted in Figure 11 Zor +the case of
no modulation, Equation (A8), and for various values of
Bo relative to v using Equation (1.169). Applying
Equations (1.170), (1.173), and (1.174), when applicakle,
revealed that the error of the numerical integraticn of
Equation (1.169) is approximately 1%.

For uniform frequency modulation, M(t) =Mt and
M(t)==M, where M is a uniformly distributed random

variable:

1/2a M| <a
P&(M) = {(1.175)
. 1] otherwise

and A is the maximum excursion from the carrier in Hz,

thus, 2A is the bandwidth of the modulation. This

characterizaticn of M(t) would apply, for example, to a
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deterministic ﬁ(t) such as a saw tooth. As before, I
apply Equation (1.165) using Equation (1.175) and (A8), to

cbtain:

P, (x) = 4% x+A . x- A (1.176)
M Wi F (x+4)°2 Wi F (x-8)°

Equation (1.176) is plotted in Figure 12 with no modulation
(Equation A8) and for various values of A relative to v.

For the final example, Gaussian frequency modulation,
~%

p.(it) = —L _ o & (1.177)

" /276

where cé is the variance of the modulation. As befbre,

I convolve Equation (A3) this time with Equation (1.177)

and
2 ® 'g
P&, (x) = —-"—-:' I (v¥+y?) 2 exp [~ -2%—2 (x-y)?lay
M 2/2mof G
. L] -(lol78)

As with sinusoidal phase modulation, I have been unable to

solve the convolution integral analytically. However,




“(v) ¥80O° =y puo ‘' (€) 120°':=V ‘(2) 100 =V
pup ‘ 200 =AYNMm uoljojnpows fouanbaly wioun puo
ow Ou 0} 134& jo jo1d aAjp10dwo) rARUE !

'
O
W
~

]

‘(1)200°=1 uoHoINP

935/0vY 31vYH 35VHd HIVdILINW ¢
or'o GO0 000 coo- ~ OV0- Sr Qg




o<y

applying the characteristic functions, I obtain an

alternate expression of Eguation (1.178):

) -Zim
P (x) = %J' we

K, (wv)cos wx dw (1.179)
¢M 1

Expanding the cosine, I obtain,

) 1 T (=)0 x. %" on4e3 . 2n+1
P: (x) = (=) T( YT ( )
On cGw/f n=0 (2n}! %% 2 2
‘ . v? v?
exp (g5zT) W 11 (-23-2-) (1.180)
-n-3.3 G

Or, alternatively, expanding the exponential in

| Equation (1.179):

© 2n
. D § 1 % n+3 n+1l
Poy X T W nzo a7 () TR
. pM+*3 n+l1 1 _ x?
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where Wv u(z) is Whittaker's function, and F(a,b;c;z) is

'
Gauss's hypergeometric series,

Finally, Equation (1.176) will also mcdel the effect
of a nonmodulated, but finite bandwidth socurce if the
conditions stated in the beginning of this section hold.
It is clear that as long as the energy is uniformly
distributed on the average between fc-A and fc-bA.

Where fc is the carrier frequency, then Equation (1.17%6)
applies, and the bandwidth, B, is given by B=2A. A
glance at Figure 12 reveals that the effects of the
bandwidth on the pdf for 6 can be neglected if B << 2v.

The above analysis also reveals that modulation coupled

with bandwidth effects are additive. Thus,

P: () = P; (3)*P. (¢)*P: () (1.182).

where P& (é) is the pdf of the bandwidth which we have
B

"assumed is uniform between *B/2, and P (5) is the pdf

¢
. MB
for ) when a narrowband signal is modulated and the

criterion B << 2v is not satisfied.
Taking the three examples of modulation used above,
and coupling them with the bandwidth effect, I obtain for

sinusoidal phase modulation,
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ga
. _ 1 1 X + B/2 - vy
P¢ (x) = 35T ppp—— - —
MB lag YETOP=YY INHF (x+B/2-y)°
- x - B2 -y __ lay (1.183)
NITF (x - B/2 - y)2
or,
P: (X)) = 2y K, (wv)J _(wBc)cos wx sin wB dw (1.184)
¢ BT 1l o 2 :
MB
o)
For Gaussian frequency modulation,
[- -}
1 1 2
P; (X)) = ————o J exp(- ==y (x-y)?]
¢MB ZBVZHGG - 20G
. y*8/2 ___ _ YoB/2 gy (1.185)
NEF (x+B/2)° NiF (x-B/2)°
or
» 1, 2 g
~%wo
P, (x) = 2 j e G K, (wv)coswx sin wB dw (1.186)
up BT 1 2
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and for uniform frequency modulation,

Pi’MB(X) = -4%5 {/32 ¥+ (X+A+B/2)% - /N % (x+A-8/2)°*

+ N H Yx-A-ﬁ/z)z—; VETE (x-A+B/2)‘—}
. . .(1.187) :

Finally, it should be noted at this point that kecause
a finite bandwidth signal is indistinguishable from a
"narrowband" signal which is experiencing extremely rapid §

uniform frequency modulation as indicated above, the effect

of the bandwidth, as with modulation, is felt only by 3,
the phase rate, and the amplitude variables remain

unaffected.

! 1.3.3 Crossing Rate Statistics

For path independent source induced modulation, I
have shown that the amplitude, amplitude rate, and joint
! densities of amplitude and amplitude rate are unaffected

by the modulation. It follows, therefore, that G(po)

[ will be independent of the modulation and will be equiva-

lent to the nonmcdulated single source result given by

L3l

— e e e g e
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Equation (1.18).

For a modulated or finite bandwidth signal, G(oo)
is as expected critically dependent on the parameters of
the modulation and the bandwidth. To £ind G(¢o) it is
necessary first to solve for P¢;$(¢,$) and tﬁis in turn
is crucially dependent upon the exact nature of the
modulation or bandwidth. For deterministic modulation,
I consider Eguations (1.162) and (1.163). The joint pdf

for ¢ and & without modulation is given by (8,9]:

- . - - l l - . -

P¢'¢(¢I¢) - 47V 2 3/2 ’ O.<Q 27 (1.188)
1+ & [8] <=
(1 + S5

Making the change of variables given by Eguations (1.162)

and (1.163) I obtain

TS
Hy 3 (¢.<§>) = Eml)_'r'J 1 377 4t (1.189)
'y s (6 = M(t))?
o (1 + ]

For the interval 0 to Tg: min(M(t)] < ¢ <27 + max([M(t)]
and 3! < =, Note again that the H function has all the

oroperties of a pdf. To find the phase crossing rate

>
5
%]
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GM(QO) I apply Equation (1.152) and
Ts ® .
_ 1 lo] e oAl
0 == [l + ——"—"]
)
Rewriting Equation (1.190), I obtain
T
2 S1.% :
Vv ® .
Gy, (s ) = J J - - - d¢
M 70 4TTTS o[\)z+M(t)2+2M(t)‘é+¢z]3/2
0
@ . } :
? |
+ - . — dorde (1.191)
. [V2+M(8)2 - 2M(t) o+ 021372 J
zl: Performing the integrations cover i:
T
s
L1 gt ey —
Gy (¢,) _Z"Ts J YT+ M(E) dt (1.192)
0

This is as far as cne can proceed without the exact form

of M(t). {(Note that if ﬁ(t) - 0 I recover the no

modulation result.) Egquation (1.192) can also be used to
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find the phase crossing rate when nonstationarities make
v A function of time as well. Obviously, however, v(t)
must be known. If ﬁ(t) is a random process or the
modulation is periodic and exactly one or more integral
number of periods are on the record (if there are many
periods the number need not be integral), then the
probabilistic approach used in the previous section can
be applied here as well. From Equations (1.189), (1.163),
and (1.166),

e sy = 1 ope ~
Pa.hy, 019 = 37 By (9 (1.193)

For sinusoidal phase modulation, I use Eguation (1.169)

in Equations (1.193) and (1.151) to obtain

_ v? % 1 - X
“ul%) = 77w IBG7§;§;;§5::JO N T Sl
« . .(1.194)
Integrating first over x I obtain
L2 8¢ ay
Gulog) = 77 J Ve (1.195)

e
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The remaining integral is a complete elliptic integral

of the second kind:

Gy (6,) = =7 VBTFVT E(T , ] (1.196)
where
r = —89
Ve

For either B or ¢ - 0, GM(¢°) for no modulation is
obtained.

To demonstrate the equivalence of the probabilistic
approach and the deterministic approach given by
Equation (1.192), I consider again sinusocidal phase

modulation:

M(t) 8sin (ot + ¢s)
andé

ﬁ(t) = Bocos(ct + ¢s)

Assuning I have exactly n cycles,

2nT
Gu (3 ) = = =2 ( /Ui FEI5250s 5L At (1.197)
M'To 271 2n7 j .

0
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I observe that the integral over one cycle of a cos?x is
equal to four times the integral over 0 to 7/2. Applying

this observation to Equation (1.1597),

r1r/2cr
= 1 4nc - Yt Pyt ey
Gy(ds) = 3= 557 J vV + 8%g%cos?cot dt
o
and therefore
/20
Gy, (o) = -,r%- f /v + B%acos?ot dt (1.198)

- I make the change of variables x =0t and apply the

trigonometric identity cos®x = 1 -sin?x in

Equation (1.198) and simplifying,

n/2

Gy (8,) = ;12— NEF BT [ I =820 /v*¥B8%*5?)Jsin*x dx

< . . (1.199)

The integral in Equation (1.199) is the definitive form

! AN

. Sy TR T REE SRR
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of the complete elliptic integral of the second kind and
Equation (1.196) is recovered exactly.
For Gaussian frequency modulation, Equation (1.178)

is applied and

-] [~ -]
Gy (o) = v? ~ { 1 73 j x expl- gér(x-y)zldxdy
27 2ncé (v +y?) G
o)
. . -(1.200)
Performing the integration over x yields
2
v2g © exp(- f%y)
G G v v
Gy(3,) = ——=7> D_,(- =) + D_, (=) rdy
. .« .(1.201)

where Dp(z) is the parabolic cylinder functicn [24]. I

now apply the identity [24]

- |
N v plz?* _ /27 2, ,1l-0 3 2% |
Dp(z) 2 e =) M( 2,217) . ) M( 3 ;5:-—2—')
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to Equation (1.193;) and I have

2
ZVZUG Jw exp (= g%T)

G
Gy, (¢.) =
M'To Tv2™7

1 2
(\,z+yz)T/2 M(l'i'%’c?é)dY (1.202)

where M(a,b,2) is the confluent hypergeometric function.
The final integral in Equation (1.202) must be performed
numerically.

For uniform frequency modulation, direct use of
Equation (1.176) yields a value for G(¢°)==m. This
result is not a physical characteristic, but rather a
cbnsequence only of the mathematical form of
Equation (1.176). The integral leading to Eguation (1.176)

is

1
P, (x) = -—j dy (1.203)
*u TN CLIN SRR

Applying Equation (1.203) to Equations (1.193) and (1.152)
yvields

X
dxdy
J (\)2 + (x__y)2)377




I make the change of variables t

x -y and

A

A =
v? I J t+y
Gy (¢,) =y o dt dy |

Performing the integration over t yields

and finally I

2 l V2
G, (¢ ) = = J [ + < dy
M 7o 4TA 22— 2 /=2 2—
‘A Ve +y vi&/Vei+y

obtain the result

(1.204)

Gy (8)

no modulation result. Note
Equation (1.204)
rate for a finite bandwidth

The crossing rates for

T U

width have not been solved;

In the limit as A -+ 0 Equation (1.204) converges to the

then I have exactly the phase crossing

1 2
+ — NPT+ A
é] 4=

if I let A=B/2 in

non-mecdulated source.
modulated signals with band-

however, the procedure is guite
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straightforward; though the integrals may not be.
I now consider the ratio of amplitude crossing rates
to phase crossing rates. Dyer and Shepard [15] obtained

this ratio for the narrowband, no modulation, single

source:
G(p,) 5 Po é

= (8m) 5 exp (- 537) {1.205%)
G(9,) 1 1

Equation (1.205) is independent of v and derpends only upon
ci which, being a measure of the energy in the signal,

is a controllable parameter unrelated toc oceanic phenomena.
However, non-stationarv behavior of ci due to ocean
dynamics will affect the ratio given by Eguation (1.205).
Likewise, if the source is modulated or has a bandwidth

which is not << 2v then the ratio given by Egquation (1.205)

will be affected. For these cases, the ratio G(po)/G(¢o)
will be a function of ci, v?, and parameters of the
modulation. Adopting the approach in Reference [15],.

I obtain

Giry)

= e
(87w) CalPo(oo) (1.206)

W“oo)

where, for sinusoidal phase modulation,

i .




-170~
c = — , r=—3% (1.207)
2/3%5*F3* El3, 1] /3232 %V
for uniform frequency modulation,
C = va" (1.208)
v 1n| — 1 + AN+ A
YV FAYT - A
for Gaussian frequency modulation,
-1
. 2T
C = [17 GM(¢°)] (1.209)

where GM(¢°) is given by Equation (1.202), and finally
for a finite bandwidth, non-modulated source C is given
by Equation (1.208) with A=B/2. Except for the finite
bandwidth result, great care should be taken in applying
the formulas in this section to insure that the actual
modulation fits the kinds of modu